
Nachos

Matthew Peters, Robert Hill, Shyam Pather

September 1, 1998

1 Introduction

Nachos is a multitasking operating system simulation that runs in a single Unix process. It

implements a multi-process model by using user-level threads. Thus, each user-level thread

is viewed as its own process under Nachos.

From �gure 1 below you can see the overall structure of Nachos. Each thread (indicated

by T1, T2, and so on) is an independent thread of control in the Nachos operating system.

For the most part, they can be viewed as processes, only on a smaller scale. It should be

noted that all of the internals of the Nachos program are invisible to Unix while running:

to Unix, Nachos is just another process.

Nachos

MIPS Simulator

T1

Scheduler

Timer

Waiting

Ready

Ready

CurrentThread

ReadyList

T2

T4

T6

SP

PC

Figure 1: Structure of the Nachos Process

Unlike a real operating system, Nachos doesn't run on bare hardware. To simulate the

low-level functions of interrupts, clocks and registers, the Nachos operating system simulates

1

a MIPS processor. This processor is capable of performing the same jobs a normal processor

would, including executing arbitrary instructions from a user program.

The Nachos system can run in two modes: User mode, and System mode. In user mode

the MIPS simulator is spinning through a series of fetch-execute cycles on a user program.

It does this until a system trap occurs, either as the result of an expired quantum, an illegal

instruction, a page fault, or a system call. At this point it switches into system mode.

It should be noted that while user programs in Nachos are run on the simulated MIPS

machine, System Mode transactions are performed directly on the host machine (in this case,

an x86).

2 Machine Setup

The simulated MIPS processor consists of a set of registers (implemented in software as an

array of integers), a bank of main memory, and a set of simple read and write instructions.

A conceptual view of this is shown in Figure 2.

Register

Register

Register

Register

Program Counter

Register
Page Table

VPN: 0

VPN: 1

VPN: 2

VPN: 3

VPN: 4

PPN: 3

PPN: 9

PPN: 51

PPN: 2

PPN: 15

Main Memory (16K)

Timer

Systemticks 339392 UserTicks 27182837

ReadReg()

WriteReg()

ReadMem()

WriteMem()

Translate(vpn, ppn)

Interrupt()

OneTick()

Figure 2: Machine Functions and Structure

When a program is loaded into memory the Nachos operating system reads the contents

of the program's executable �le from disk, then writes those contents into main memory.

This is done one byte at a time. Once the contents of the executable are in memory and the

program counter is set, the machine begins execution by calling Machine::Run() (located in

machine/mipssim.cc).

The structure of the MIPS machine can be seen below:

class Machine {

public:

void Run();

int ReadRegister(int num);

void WriteRegister(int num, int value);

2

void OneInstruction(Instruction *instr);

bool ReadMem(int addr, int size, int* value);

bool WriteMem(int addr, int size, int value);

ExceptionType Translate(int virtAddr, int* physAddr, int size);

void RaiseException(ExceptionType which, int badVAddr);

char *mainMemory;

int registers[NumTotalRegs];

};

Machine::Run() gets the next instruction (from the position indicated by the program

counter) and decodes it. It then uses a switch statement containing one case of each of the

instructions in the machine's instruction set, in order to evaluate the instruction. Part of

this switch statement is shown below:

switch(instr->opCode) {

...

...

...

case OP_SYSCALL:

RaiseException(SyscallException, 0);

break;

case OP_XOR:

registers[instr->rd] = registers[instr->rs] ^ ...

break;

case OP_XORI:

registers[instr->rt] = registers[instr->rs] ^ ...

break;

case OP_UNIMP:

RaiseException(IllegalInstrException, 0);

return;

...

...

...

}

Note that in the case of an OP SYSCALL the machine calls RaiseException, which is the

equivalent of a trap into kernel space in a normal operating system. The path of a system

call trap into kernel space can be seen below:

3

do_system_call(int syscall_num) {

reg4 = machine->ReadRegister(4);

reg5 = machine->ReadRegister(5);

reg6 = machine->ReadRegister(6);

reg7 = machine->ReadRegister(7);

switch (syscall_num) {

case SC_HALT :

 System_Halt();

 break;

case SC_Exec:

 returnvalue = System_Exec(reg4);

 break;

Machine::OneInstruction(Inst)

{

switch (Inst) {

 case OP_ADD:

 sum = registers[instr->rs] + ...

 return;

 case OP_ADDI:

 sum = registers[instr->rs] + ...

 return;

mipssim.cc

case OP_SYSCALL:

 RaiseExeption(SyscallException);

 return;

case OP_XOR:

 registers[instr->rd] = registers[...

 return;

default:

 ASSERT(FALSE);

}

Machine::RaiseExeption(Exception Type)

{

 ExceptionHandler(which)

}

ExeptionHandler(ExceptionType which)

{

 int type = machine->ReadRegister(2);

 if (which == SyscallException) {

 do_system_call(type);

}

Kernel Mode

User Mode

Trap to Kernel Mode

machine->WriteRegister(2, returnvalue)

}

systemcall.cc

exception.ccmipssim.cc

Figure 3: Trap into Kernel Mode

3 Main Memory

In the MIPS simulator, main memory is implemented as an array of bytes. This array is

written to by the instructionWriteMem(), and is read by the instruction ReadMem(). Inside

the machine object is a pointer to a page table, which is a table of translations from virtual

addresses to physical addresses. An executing instruction which references a virtual address

must �rst have that virtual address translated into a physical address via Translate() (which

refers to the page table) before it can be executed.

This translation step during the fetch-execute cycle is shown below:

4 The Nachos Thread

A Nachos thread can be viewed as a diminutive process. Threads are created and destroyed

with the Fork and Exit system calls, respectively. The thread object also contains a set of

structures similar to a Unix processes PCB. The thread object is pictured below:

4

Machine Simulator:

Main Memory: 128pages, 128 bytes per page.

Page 0

owners

owners #

owners

owners #

owners

owners #

owners

owners #

Page 1 Page 126 Page 127

next_inst = read_mem(pc);

execute_inst(next_inst);

pc++;

read_mem()

translate_address(pc)

Logical Address

Physical Addressread_main_memory()

Page Table

Page Table

virtualPage = 0

physicalpage = 1

readonly = FALSE

dirty = FALSE

virtualPage = 1

physicalPage = 6

dirty = FALSE

readonly = FALSE

virtualPage = 2

physicalPage = 4

dirty = FALSE

readonly = FALSE

Fetch-Execute w/ no PageFault

Registers

Next Instruction

Figure 4: Address Translation

From: code/threads/thread.h (not complete)

class Thread {

public:

FDTEntry *FDTable [MAX_FD];

int ThreadID;

ThreadStatus status;

unsigned int* stack;

char name [MAXFILENAMELENGTH + 1];

int userRegisters[NumTotalRegs];

void SaveUserState();

void RestoreUserState();

AddrSpace *space;

FDTEntry *getFD (int fd);

private:

unsigned int machineState[MachineStateSize];

};

5

5 State/Context Switching

As we can see, the thread contains many of the same structures as a Unix PCB: a �le

descriptor table, an Id, and a current status.

The primary di�erence bewteen a Nachos thread and a Unix process is that a Nachos

thread contains two sets of registers and two stack pointers. This is because the Nachos

user-program runs on a MIPS processor, while the kernel runs on a host processor (in this

case, an x86). For this reason, the individual thread needs two sets of everything to save

its context (i.e. it needs to know where it was in it's user program and where it was in

the kernel). It should be noted that this roughly corresponds to Unix, which maintains a

user-space stack and a kernel stack for each process.

6 Multi-Programming

Just as a Unix user program executes inside a process, a Nachos user program executes inside

a thread. The following sections describe the way in which nachos manipulates threads while

in system mode to produce multi-programming and virtual memory.

Nachos uses a �xed quantum, round-robin scheduling algorithm. Thus, when one thread

has been executing on the MIPS machine and its quantum expires, an interrupt is triggered

(a simulated interrupt on the simulated machine), which causes a trap into system mode.

In kernel space, the scheduler then forces the currently running thread to yield, and saves

its state. The scheduler then �nds the next available thread on the ready list, restores its

state, and lets the simulated MIPS processor run again. This process is displayed in Figure

5, below.

T1

Context

Program Counter

next = Find_Next_To_Run

current_thread->save_state

current_thread = next;

next->restore_state

reset_timer()

Scheduler

T2

Context

Address Space

Address Space

T1.save_state()

T2.restore_state

PC1

PC2

MIPS Simulator

MIPS registers

Figure 5: Context Switching

As described in the previous section, when a Nachos thread does a context switch it must

save two sets of registers. This can be seen in the code for Scheduler::Run(), seen below.

This function is usually called when the current thread's quantum has expired, and a new

thread needs to be switched in.

6

void

Scheduler::Run (Thread *nextThread)

{

Thread *oldThread = currentThread;

if (currentThread->space != NULL) {

currentThread->SaveUserState();

currentThread->space->SaveState();

}

currentThread = nextThread;

currentThread->setStatus(RUNNING);

SWITCH(oldThread, nextThread);

if (threadToBeDestroyed != NULL) {

delete threadToBeDestroyed;

threadToBeDestroyed = NULL;

}

if (currentThread->space != NULL) {

currentThread->RestoreUserState();

currentThread->space->RestoreState();

}

}

This function is called with a pointer to the next thread to run. The scheduler then

saves the current threads state (there are two calls here, the �rst one is for the user-state

MIPS register, the second is to save the page table from the machine). We then set the

new thread's status to running and call a machine language routine SWITCH. This saves

the host machine registers associated with the �rst thread, and then restores the registers

associated with the new thread.

It should be noted that, on return from SWITCH, a di�erent thread is executing. If

the switch is from Thread 1 to Thread 2, going into SWITCH Thread 1 is running, coming

out of SWITCH, Thread 2 is now running, Thread 1 has been put back on the ready list,

for resumption later (note: Thread 1's host PC still points to SWITCH, so that when it

resumes later it will resume from there).

7 Running User Programs

A Nachos thread exists primarily to run user programs. To do this, the thread object has a

pointer to an address space object, which has a page table inside it.

To run a user program, the thread must have control of the MIPS simulator. When this

is the case, the thread's user program will be resident in main memory and the machine's

7

program counter will be pointing to an instruction somewhere in that memory. Then the

machine invokes Run(), which simply loops through a fetch-and-execute cycle, reading in-

structions from main memory and executing them until the threads quantum expires and

the scheduler swaps it out. The user program execution process is diagramed below:

Thread 1

JUST_CREATED

READY

RUNNINGBLOCKED

ZOMBIE

Machine State (HOST)

Machine State (MIPS)

Address Space

Process Control Block
ThreadId

Name

File Descriptor Table

MIPS SIMULATOR

pushl %ebx

movl %esp, %ebp

subl $16, %esp

leal -12(%ebp),%ebx

call __myfunction

addl $4, %exp

pushl $1

STATE

Program Counter

User Stack Pointer

Figure 6: Executing a User Process

8 Memory Management

Nachos uses paging to give its threads contiguous logical address spaces. These logical

address spaces are 128 kilobytes in size, even though the simulated MIPS processor on which

they run has only 16 kilobytes of main memory. In order to accomplish this, a virtual

memory scheme is used. In this scheme, pages of memory that are not in use are swapped

out to a disk �le, from which they are read back into memory when they are needed.

As with most modern computer systems, paging is achieved through the use of memory

management unit (MMU). The MemoryManager and Machine objects together serve as the

MMU of the nachos system. The MemoryManager object keeps track of which physical

memory pages are free, which are used, and the owners of the used pages. As such, it is

primarily involved in memory resource allocation. The Machine object, among other things,

holds the page table of the currently running Nachos thread.

Since each Nachos thread is viewed as a process with its own contiguous logical address

space, each thread needs its own page table. In Unix, a pointer to a process's page table

is stored in its PCB. As described earlier, the Nachos equivalent of the PCB is the Thread

object, which maintains all the information that the kernel needs to know about a thread.

One of the items in the Thread object is a pointer to an AddrSpace object. This object is

simply an abstraction of the thread's logical address space, and contains a pointer to the

thread's page table. When the CPU is given to the thread, the page table in the Machine

object is loaded using this pointer.

Figure 7 shows how page tables are used to give threads contiguous logical address spaces.

8

Status: READY

Page Table

Thread2

Name: shell

ThreadID: 2

Thread1

Status: READY

Name: Matmult

ThreadID: 4

Page Table

VPN: 0

VPN: 1

VPN: 2

VPN: 3

VPN: 4

VPN: 5

PPN: 0

VPN: 0

VPN: 1

VPN: 2

VPN: 3

VPN: 4

VPN: 5

PPN: 6

PPN: 4

PPN: 3

PPN: 2

PPN: 18

PPN: 41

PPN: 5

PPN: 7

PPN: 8

PPN: 10

PPN: 16

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Figure 7: Non-contiguous Memory Allocation

The thread's page table is implemented as an array of TranslationEntry objects, with

one TranslationEntry object for each page of the thread's logical address space. The Trans-

lationEntry class is declared as follows:

class TranslationEntry {

public:

unsigned int virtualPage;

unsigned int physicalPage;

bool valid;

bool readOnly;

bool use;

bool dirty;

OpenFile* File;

size_t offset;

bool zero;

bool cow; // Copy on write

};

The most obvious function of the TranslationEntry object is to hold the virtual to physical

page mapping of a page. In addition, it also has a validmember whose value indicates whether

the page is \valid" (i.e. has not been swapped out of main memory). It also contains members

9

to indicate the read-only status of the page (program text pages are usually considered read-

only), use of the page (set every time the page is referenced by the hardware), and whether

or not the page has been modi�ed (whether or not it is \dirty").

The File �eld points to a physical (Unix) �le which contains the program text. This may

be the swap�le, in the case of a program that has been paged, or the executable �le from

which the program came. o�set then, refers to the page's o�set within the �le.

When a program makes a reference to a logical memory address, the machine invokes the

Translate() function to get the corresponding physical address. Translate() �nds the page

table entry for the page containing the logical memory address, and checks is valid member.

If the page is \valid", then Translate simply computes the physical address corresponding

to the logical address it was passed, and this is then used to complete the original memory

reference.If the page is found to not be \valid" (because it is not currently in main memory),

then a page fault exception is generated. The exception handler handles the page fault by

swapping the desired page back into main memory. The instruction that originally performed

the memory reference is then restarted. This process is illustrated in Figure 8.

if (exception != NoException) {

machine->RaiseException(exception, addr);

return FALSE;

}

{

Machine::ReadMem(int addr, int size, int *value)

}

exception = Translate(addr, &physicalAddress, size, FALSE);

return (TRUE);

switch(size) {

 case 1:

 *(char *)value = (char) data;

 break

 *(unsigned short *)value = ShortToHost(data);

 break;

 case 4:

 data = *(unsigned int *) &machine->mainMemory[physicalAddress];

 *value = WordToHost(data);

 breakl

 default: ASSERT(FALSE)

}

 data = *(unsigned short *) &machine->mainMemory[physicalAddress];

 case 2:

 data = machine->mainMemory[physicalAddress];

Machine::RaiseException(ExceptionType which, int badVAddr)

{

 registers[BadVAddrReg] = badVAddr;

 ExceptionHandler(which);

}

ExceptionType

Machine::Translate(int virtAddr, int *physAddr, int size, bool writing)

{

// Calculate the virtual page number, and offset within the page.

// from the virtual address.

vpn = (unsigned) virtAddr / PageSize;

offset = (unsigned) virtAddr % PageSize;

if (vpn >= pageTableSize) {

 return AddressErrorException;

} else if (!pageTable[vpn].valid) {

 WriteRegister(BadVAddrReg, vpn);

 return PageFaultException;

}

void ExceptionHandler(ExceptionType which)

{

 int type = machine->ReadRegister(2);

 if (which == SyscallException) {

 do_system_call(type);

 } else if (which == PageFaultException) {

 int virtaddr = machine->ReadRegister(BadVAddrReg);

 stats->numPageFaults++;

 memory->pagein(virtaddr / PageSize, currentThread->space);

} else if {

Original Instruction

Machine Restarts
Memory Manager Swaps

Page into Main Memory

bool
machine/translate.cc

machine/translate.cc

machine/machine.cc

userprog/exception.cc

userprog/memmgr.cc

Figure 8: A Page Fault

10

9 Demand Paging

When a Nachos program is loaded, only its �rst and last pages are brought into main memory.

The �rst page will be the �rst page of the program's text segment, and the last page will be

its stack. Even though only two pages of the program are loaded into memory, page table

entries are set up for all the program's pages. However, only two of these entries (the �rst

and the last) will contain valid logical to physical page mappings. The others will all have

their \valid" bits set to false.

Thus, when the program makes a reference to a page that has not been loaded, it will

�nd the valid bit of its page table entry set to false. A page fault exception will be generated

as described in the previous section.

Nachos handles page faults by loading the referenced page into main memory, and restart-

ing the instruction that generated the page fault. Pages are swapped in using the Memory-

Manager::pagein() function. In order to swap a page in, this function may need to swap an-

other page out (if there are no free pages). This is done using theMemoryManager::pageout()

function.

The �le from which a page is read when being swapped into memory will vary depending

on the nature of the page. The TranslationEntry object of each page contains a pointer to

an OpenFile object. This member points to the �le from which the page can be read if it

gets swapped out disk and has to be swapped back into main memory. This will point to the

swap �le, if the page had been modi�ed before it was swapped out, or the original executable

�le if it has not been modi�ed. If the page contained was contained only uninitialized data,

the pointer to the OpenFile object is set to NULL (since the page would contain only zeros,

and would not need to be read from a disk �le when swapped back into main memory).

10 Concluding Remarks

As of this writing, Nachos incorporates most of the standard operating system features

such as multi-tasking, preemptive scheduling and virtual memory. While these systems are

functional and reasonably stable, they are certainly not optimal. During most of our coding,

we have tried to give clarity a higher priority than optimal performance. We hope this will

aid you in your Nachos programming endeavors.

11

