Proactive Design for Multimedia Communication Systems with Resource and Information Exchanges

Mihaela van der Schaar Assistant professor University of California Davis

- Challenges for wireless multimedia -> Research focus
- Scalable video coding and processing
- Cross-layer optimized wireless multimedia
- Proactive collaboration for wireless multimedia
- Research directions beyond this talk
- A new chance to reinvent multimedia compression, processing, communication & system design!

3 Wireless Multimedia Applications

Wireless: 802.11 WLANs, Opportunistic SAR

- Entertainment
- Emergency services
- Surveillance
- Telemedicine
- Videoconferencing
- Remote teaching and training
- Augmented reality
- Distributed gaming

Hard delay constraints!
High bandwidth!
Loss tolerant!

STARBUCKS

WAYPORT

IN-HOME STREAMING

MEETINGS

4 Challenges

Wireless networks provide limited QoS for multimedia applications

Dynamic QoS requirements

- application constraints (delay, rates) and characteristics (codec used,...)
- · multimedia traffic characteristics
- usage scenarios
- user preferences

4 Challenges

Wireless networks provide limited QoS for multimedia applications

Dynamic QoS requirements

- application constraints (delay, rates) and characteristics (codec used,...)
- multimedia traffic characteristics
- usage scenarios
- user preferences

Wireless stations (WSTA) experience time-varying channel conditions

WSTA adopt different cross-layer strategies

WSTA transmission strategy influences the network dynamics Tradeoff between fairness and efficiency

Challenges

Wireless networks provide limited QoS for multimedia applications

Dynamic QoS requirements

- application constraints (delay, rates) and characteristics (codec used,...)
- multimedia traffic characteristics
- usage scenarios
- user preferences

Wireless stations (WSTA) experience time-varying channel conditions

WSTA adopt different cross-layer strategies

WSTA transmission strategy influences the network dynamics Tradeoff between fairness and efficiency

Unique constraints of *multimedia applications* change fundamental communication design principles

5 Existing theory

- Information and coding theory [Shannon and beyond]
 - "ideal" point-to-point communication setting
 - simplistic source models -> not accurate for multimedia coders
 - no delay constraints (concept of "streaming" is absent)
 - no resource management issues and policies such as fairness, etc.
 - system issues neglected essential for realistic wireless multimedia communications
- Complexity Distortion Theory [Kolmogorov and beyond]
 - simplistic source models -> not accurate for multimedia coders
 - no consideration of the limitations, capabilities and specific features of (resource-constrained) systems and architectures
- Optimization, Control, Microeconomic Theory
- On-line algorithms, competitive analysis etc.

6 Our research aim

Contribute towards the development of a unifying theory, design and implementation of realistic multimedia communication systems

Our research aim

Contribute towards the development of a unifying theory, design and implementation of realistic multimedia communication systems

Objectives (NSF Career)

- Traditional resource management passively optimizes resources
 - Based on fixed, worst-case resource requirements
 - Do not consider the impact on other WSTAs
 - Do not consider realistic multimedia utility-cost functions
- Proactive collaboration among competing wireless stations
 - Influence system dynamics through resource/information exchanges
 - Users collaborate and even sacrifice short-term performances, with the incentive that overall system performance can be improved and users' temporary sacrifices will be paid back in a long term
- Why coopetition for multimedia?
 - Loss tolerant, delay sensitive, power sensitive

- Resource exchanges enabled through adapting cross-layer transmission strategies of participating stations
 - new cross-layer algorithms that explicitly consider multimedia
- Rate-Distortion-Power scalable multimedia coding and streaming
- Formal Methods for Proactively Designing and Optimizing Multimedia Systems

Our research aim

Contribute towards the development of a unifying theory, design and implementation of realistic multimedia communication systems

Objectives (NSF Career)

- Traditional resource management passively optimizes resources
 - Based on fixed, worst-case resource requirements
 - Do not consider the impact on other WSTAs
 - Do not consider realistic multimedia utility-cost functions
- Proactive collaboration among competing wireless stations
 - Influence system dynamics through resource/information exchanges
 - Users collaborate and even sacrifice short-term performances, with the incentive that overall system performance can be improved and users' temporary sacrifices will be paid back in a long term
- Why coopetition for multimedia?
 - Loss tolerant, delay sensitive, power sensitive

Objectives (cont.)

- Resource exchanges enabled through adapting cross-layer transmission strategies of participating stations
 - new cross-layer algorithms that explicitly consider multimedia
 - Rate-Distortion-Power scalable multimedia coding and streaming
- Formal Methods for Proactively Designing and Optimizing Multimedia Systems

Collaborative framework for wireless multimedia

Goal: Construct a system, where users can borrow or lend resources from the system/other users, according to their specific utility and resource awareness.

Prior Scalable Video Coding standards - Not efficient for heterogeneous IP networks

- Coarse Granularity Scalability (Operate at a discrete set of bit-rates)
- Limited coding efficiency
- Overhead increases with the number of layers

What is important for multimedia communication over IP networks?

- On-the-fly & efficient adaptability to bandwidth variations, QoS levels
- Adaptation to different user & device requirements
- Complexity-scalable encoding/decoding

Prior Scalable Video Coding standards - Not efficient for heterogeneous IP networks

- Coarse Granularity Scalability (Operate at a discrete set of bit-rates)
- Limited coding efficiency
- Overhead increases with the number of layers

What is important for multimedia communication over IP networks?

- On-the-fly & efficient adaptability to bandwidth variations, QoS levels
- Adaptation to different user & device requirements
- Complexity-scalable encoding/decoding

Our first solution - A new coding paradigm Fine-Granularity Scalability (FGS) [vanderSchaar - PhD thesis, '01]

10 FGS – embedded video coder (Successive refinement)

Goal: Achieve optimal description at each encoding stage

FGS – embedded video coder (Successive refinement)

Goal: Achieve optimal description at each encoding stage

1980 Koshelev proved that R-D problem is successively refinable if individual solutions of the R-D problem can be written as a Markov chain

$$\exists Q_{x_1,x_2|x} \text{ s.t.}$$

$$E\{d(X,X_i)\} \leq D_i, \quad i=1,2.$$

$$I(X;X_i) = R(D_i), \quad i=1,2.$$

$$X \leftrightarrow X_2 \leftrightarrow X_1 \text{ is a Markov chain}$$

$$\Rightarrow \{D_1,D_2,R(D_1),R(D_2)\} \text{ is achievable}$$

1991 Equitz & Cover proved that the condition is also necessary.

10 FGS – embedded video coder (Successive refinement)

Goal: Achieve optimal description at each encoding stage

1980 Koshelev proved that R-D problem is successively refinable if individual solutions of the R-D problem can be written as a Markov chain

$$\exists Q_{x_1,x_2|x} \text{ s.t.}$$

$$E\{d(X,X_i)\} \leq D_i, \quad i=1,2.$$

$$I(X;X_i) = R(D_i), \quad i=1,2.$$

$$X \leftrightarrow X_2 \leftrightarrow X_1 \text{ is a Markov chain}$$

$$\Rightarrow \{D_1,D_2,R(D_1),R(D_2)\} \text{ is achievable}$$

1991 Equitz & Cover proved that the condition is also necessary.

- Video sources are NOT successively refinable with respect to the PSNR distortion metric
- Even if a source is not successively refinable, the penalty for FGS embedded coding is small @

Fine-Granular-Scalability (FGS) in MPEG-4

98 Activity initiated by our group

MPEG-4 approved an FGS core-experiment

- 1 01 FGS became an International Standard
 - Widely researched
 - Web search on "FGS coding" generates more than 2000 links
 - Most used scalable coder for multimedia communication research
 - Sessions dedicated to FGS at major IEEE conferences (ICIP, ICME etc.)
 - FGS opened a broad area of research (PhD theses based on FGS)
 - Optimal rate-allocation strategies (rate-shaping etc.)
 - Joint source-channel coding of FGS streams
 - Efficient streaming algorithms

Fine-Granular-Scalability (FGS) in MPEG-4

* 98 Activity initiated by our group

MPEG-4 approved an FGS core-experiment

- 101 FGS became an International Standard
- Widely researched
 - Web search on "FGS coding" generates more than 2000 links
 - Most used scalable coder for multimedia communication research
 - . Sessions dedicated to FGS at major IEEE conferences (ICIP, ICME etc.)
 - FGS opened a broad area of research (PhD theses based on FGS)
 - Optimal rate-allocation strategies (rate-shaping etc.)
 - Joint source-channel coding of FGS streams
 - Efficient streaming algorithms

However, FGS had coding efficiency penalty & no spatial scalability

12 Wavelets and motion compensation

- Wavelet transform coding for still images (e.g. JPEG 2000)
- -> Extension to video coding (3D wavelet video)
- Using transforms for interframe coding goes back to '70s, '80s (e.g. Karlsson/Vetterli)
- Drawback was lack of motion compensation
 - Motion compensation is key to achieve high compression & visual quality, but difficult

12 Wavelets and motion compensation

- Wavelet transform coding for still images (e.g. JPEG 2000)
- -> Extension to video coding (3D wavelet video)
- Using transforms for interframe coding goes back to '70s, '80s (e.g. Karlsson/Vetterli)
- Drawback was lack of motion compensation
 - Motion compensation is key to achieve high compression & visual quality, but difficult

Our contributions

- Unconstrained Motion Compensated Temporal Filtering (UMCTF)
- Fully Scalable 3-D Overcomplete Wavelet Video Coding
- 3-band temporal lifting structures
- Spatio-temporal MV scalability
- Rate-Distortion Optimized Anisotropic Motion Representation
- User-centric tradeoffs for spatio-temporal-SNR scalability
- Multiple Description Scalable Video Coding based on UMCTF

Motion compensated temporal filtering (MCTF) – background [Ohm '93]

video sequence

Motion compensated temporal filtering (MCTF) – background [Ohm '93]

$$i = \{0,1\}$$
 :
$$H_t[m+i] = \frac{1}{\sqrt{2}} \left(A_t[m+i] - I_{(\frac{1}{2})} A_{t-1}[m+i-3] \right)$$

Prediction

$$i = \{0,1\}$$
:

$$L_{t}[m+i-3] = \sqrt{2}A_{t-1}[m+i-3] + \mathcal{I}_{(\frac{1}{2})}H_{t}[m+i-1]$$

Update

Unconstrained MCTF – Adaptive temporal filtering

[vanderSchaar and Turaga '02]

Predict

$$\begin{split} H_t^{\lambda}[m,n] &= L_t^{\lambda-1}[m,n] - \sum_{q=t-t_p^{\mathrm{init}}(\lambda)}^{t-1} \left(w_q[m,n] \cdot \boldsymbol{\alpha}_q \cdot H_q^{\lambda-1}[m-d_m^{\mathcal{F}_{t-q}(q)},n-d_n^{\mathcal{F}_{t-q}(q)}]\right) \\ &- \sum_{q=t+1}^{t+t_p^{\mathrm{end}}(\lambda)} \left(w_q[m,n] \cdot \boldsymbol{\alpha}_q \cdot H_q^{\lambda-1}[m-d_m^{\mathcal{B}_{q-t}(q)},n-d_n^{\mathcal{B}_{q-t}(q)}]\right) \end{split}$$

Unconstrained MCTF – Adaptive temporal filtering

[vanderSchaar and Turaga '02]

Predict

$$\begin{split} H^{\lambda}_{t}[m,n] &= L_{t}^{\lambda-1}[m,n] - \sum_{q=t-t_{p}^{\mathrm{imit}}(\lambda)}^{t-1} \underbrace{\left(\underline{w_{q}[m,n]} \cdot \underline{\alpha_{q}} \cdot H_{q}^{\lambda-1}[m-d_{m}^{\mathcal{F}_{t-q}(q)}, n-d_{n}^{\mathcal{F}_{t-q}(q)}] \right)}_{-\sum_{q=t+1}^{t+t_{p}^{\mathrm{out}}(\lambda)} \left(\underline{w_{q}[m,n]} \cdot \underline{\alpha_{q}} \cdot H_{q}^{\lambda-1}[m-d_{m}^{\mathcal{B}_{q-t}(q)}, n-d_{n}^{\mathcal{B}_{q-t}(q)}] \right) \end{split}$$

No. of lifting pairs

Update

Temporary Update Frame

Lifting parameters

$$Z_t[m-d_m^{\mathcal{B}_{q o}(q)},n-d_n^{\mathcal{B}_{q o}(q)}]=Z_t[m-d_m^{\mathcal{B}_{q o}(q)},n-d_n^{\mathcal{B}_{q o}(q)}]+w_q[m,n]\cdot \underline{oldsymbol{eta}_q}\cdot H_q^\lambda\left[m,n
ight]$$

Connectivity Map

$$c_u[m-d_m^{\mathcal{B}_{q-t}(q)},n-d_n^{\mathcal{B}_{q-t}(q)}]=c_u[m-d_m^{\mathcal{B}_{q-t}(q)},n-d_n^{\mathcal{B}_{q-t}(q)}]+1$$

Updated Frame

$$L_t^{\lambda}[m,n] = \left[L_t^{\lambda-1}[m,n] + rac{1}{\max\{c_a[m,n],t^{\mathcal{B}}(\lambda)\}}Z_t[m,n]
ight]$$

Example: Three-band decomposition structure with bidirectional predict operators [Tillier, Pesquet, vanderSchaar '03]

$$h_t^+(\boldsymbol{n}) = x_{3t+1}(\boldsymbol{n}) - \beta x_{3t+2}(\boldsymbol{n} - \boldsymbol{v}_{3t+1}^-) - (1 - \beta) x_{3t}(\boldsymbol{n} - \boldsymbol{v}_{3t+1}^+)$$

$$h_t^-(\boldsymbol{m}) = x_{3t-1}(\boldsymbol{m}) - \beta x_{3t-2}(\boldsymbol{m} - \boldsymbol{v}_{3t-1}^+) - (1 - \beta) x_{3t}(\boldsymbol{m} - \boldsymbol{v}_{3t-1}^-)$$

$$l_t(\mathbf{p}) = x_{3t}(\mathbf{p}) + \alpha h_t^+(\mathbf{p} + \mathbf{v}_{3t+1}^+) + \alpha h_t^-(\mathbf{p} + \mathbf{v}_{3t-1}^-)$$

16 Ex

Example: Three-band decomposition structure with bidirectional predict operators [Tillier, Pesquet, vanderSchaar '03]

$$h_t^+(n) = x_{3t+1}(n) - \beta x_{3t+2}(n - v_{3t+1}^-) - (1 - \beta) x_{3t}(n - v_{3t+1}^+)$$

$$- u_m - u_m -$$

Updated Frame

$$L_t^{\lambda}[m,n] = \left[L_t^{\lambda-1}[m,n] + rac{1}{\max\{c_{m{s}}[m,n],t^{\mathcal{B}}(\lambda)\}}Z_t[m,n]
ight]$$

Unconstrained MCTF – Adaptive temporal filtering

[vanderSchaar and Turaga '02]

Predict

$$\begin{split} H^{\lambda}_{t}[m,n] &= L_{t}^{\lambda-1}[m,n] - \sum_{q=t-t_{p}^{\mathrm{imit}}(\lambda)}^{t-1} \underbrace{\left(\underline{w_{q}[m,n]} \cdot \underline{\alpha_{q}} \cdot H_{q}^{\lambda-1}[m-d_{m}^{\mathcal{F}_{t-q}(q)}, n-d_{n}^{\mathcal{F}_{t-q}(q)}] \right)}_{t+t_{p}^{\mathrm{smd}}(\lambda)} \\ &- \sum_{q=t+1}^{t+t_{p}^{\mathrm{smd}}(\lambda)} \left(\underline{w_{q}[m,n]} \cdot \underline{\alpha_{q}} \cdot H_{q}^{\lambda-1}[m-d_{m}^{\mathcal{B}_{q\to t}(q)}, n-d_{n}^{\mathcal{B}_{q\to t}(q)}] \right) \end{split}$$

No. of lifting pairs

Update

Temporary Update Frame

Lifting parameters

$$Z_t[m-d_m^{\mathcal{B}_{q o t}(q)},n-d_n^{\mathcal{B}_{q o t}(q)}]=Z_t[m-d_m^{\mathcal{B}_{q o t}(q)},n-d_n^{\mathcal{B}_{q o t}(q)}]+w_q[m,n]\cdot \underline{oldsymbol{eta}_q}\cdot H_q^{\lambda}\left[m,n
ight]$$

Connectivity Map

$$c_u[m-d_m^{\mathcal{B}_{q-t}(q)},n-d_n^{\mathcal{B}_{q-t}(q)}]=c_u[m-d_m^{\mathcal{B}_{q-t}(q)},n-d_n^{\mathcal{B}_{q-t}(q)}]+1$$

Updated Frame

$$L_t^{\lambda}[m,n] = \left[L_t^{\lambda-1}[m,n] + rac{1}{\max\{c_a[m,n],t^{\mathcal{B}}(\lambda)\}}Z_t[m,n]
ight]$$

Example: Three-band decomposition structure with bidirectional predict operators [Tillier, Pesquet, vanderSchaar '03]

$$h_t^+(\boldsymbol{n}) = x_{3t+1}(\boldsymbol{n}) - \beta x_{3t+2}(\boldsymbol{n} - \boldsymbol{v}_{3t+1}^-) - (1 - \beta) x_{3t}(\boldsymbol{n} - \boldsymbol{v}_{3t+1}^+)$$

$$h_t^-(\boldsymbol{m}) = x_{3t-1}(\boldsymbol{m}) - \beta x_{3t-2}(\boldsymbol{m} - \boldsymbol{v}_{3t-1}^+) - (1 - \beta) x_{3t}(\boldsymbol{m} - \boldsymbol{v}_{3t-1}^-)$$

$$l_t(\mathbf{p}) = x_{3t}(\mathbf{p}) + \alpha h_t^+(\mathbf{p} + \mathbf{v}_{3t+1}^+) + \alpha h_t^-(\mathbf{p} + \mathbf{v}_{3t-1}^-)$$

17 UMCTF improvements

18 Addressing Resolution Scalability in Video Transmission

Fundamental Problem

In the Conventional MCTF motion compensation and spatial filtering are not commutative

19 Wavelet Transform (WT) - before or after MC?

19 Wavelet Transform (WT) - before or after MC?

- Conventional: WT after MC t+2D (SDMCTF)
 - Limited complexity ©
 - Spatial scalability is not very efficient ⊗
 - For block-based ME, Intra/Inter mode switch is not very efficient ®
 - Discontinuities in the motion boundaries (blocking artefacts) are represented as high-frequency content in the high-frequency wavelet subbands ®
 - ME accuracy is fixed for all spatial resolutions ⊗
 - Same temporal decomposition scheme for all spatial subbands (8)

19 Wavelet Transform (WT) - before or after MC?

- Conventional: WT after MC t+2D (SDMCTF)
 - Limited complexity ©
 - Spatial scalability is not very efficient ⊗
 - For block-based ME, Intra/Inter mode switch is not very efficient ®
 - Discontinuities in the motion boundaries (blocking artefacts) are represented as high-frequency content in the high-frequency wavelet subbands ®
 - ME accuracy is fixed for all spatial resolutions ⊗
 - Same temporal decomposition scheme for all spatial subbands (8)
- Our solution: WT before MC 2D+t (IBMCTF)
 - Multiple (separate) MC loops for wavelet bands @
 - No drift problem in spatial scalability ©
 - Switching to "intra" coding mode without penalty ©
 - Inefficiency of MC prediction in high bands ⊗
 - due to shift variance of frequency-inverting alias

Justification for the use of Overcomplete DWT (ODWT)

- □ How does one perform in-band prediction and update?
- □ What necessitates the use of overcomplete transforms?

The "AdHoc" solution

Shift invariance of the DWT

The even samples:
$$X_0(z^2) = \frac{1}{2}(X(z) + X(-z))$$

The odd samples:
$$X_1(z^2) = \frac{1}{2}z^{-1}(X(z) - X(-z))$$

$$X \xrightarrow{H} \stackrel{\text{\tiny 1}}{\longrightarrow} A_{\mathbf{0}}^{\mathbf{1}}$$

$$G \xrightarrow{\text{\tiny 1}} D_{\mathbf{0}}^{\mathbf{1}}$$

$$X \xrightarrow{H} \xrightarrow{(12)} A_0^1$$

$$A_0^1(z^2) = \frac{1}{2}(H(z) \cdot X(z) + H(-z) \cdot X(-z))$$

Shift invariance of the DWT

The even samples:
$$X_0(z^2) = \frac{1}{2}(X(z) + X(-z))$$

The odd samples:
$$X_1(z^2) = \frac{1}{2}z^{-1}(X(z) - X(-z))$$

$$X \xrightarrow{H} \xrightarrow{\mathbb{Q}} A_0^1$$
 $G \xrightarrow{\mathbb{Q}} D_0^1$
 $A_0^1(z^2) = \frac{1}{2}(H(z) \cdot X(z) + H(-z) \cdot X(-z))$

$$X_s(z) = z^k X(z)$$

$$A_{s0}^{1}(z^{2}) = \frac{1}{2}z^{k}(H(z) \cdot X(z) + (-1)^{k} \cdot H(-z) \cdot X(-z)$$

$$X(z) - z^{-k}X_s(z) = 0$$
 BUT $A_0^1(z^2) - z^{-k}A_{s0}^1(z^2) \neq 0$

 Example for MC prediction problem in context of alias : Haar filter output of step edges

Fully Scalable 3-D Overcomplete Wavelet Video Coding

[Andreopolous, vanderSchaar '02, '03] [Ye, vanderSchaar '02]

 Example for MC prediction problem in context of alias : Haar filter output of step edges

Fully Scalable 3-D Overcomplete Wavelet Video Coding

[Andreopolous, vanderSchaar '02, '03] [Ye, vanderSchaar '02]

24

Fully Scalable 3-D Overcomplete Wavelet Video Coding

[vanderSchaar, Andreopolous, Ye '02]

- ·Different prediction structures per resolution/subband
- Different accuracy of the motion estimation is possible
- Different prediction structures per resolution/subband
- Different GOP structures
- Enables backwards compatibility with DCT standards
- Complexity adaptation per resolution

Fully Scalable 3-D Overcomplete Wavelet Video Coding

[Andreopolous, vanderSchaar '02, '03] [Ye, vanderSchaar '02]

Fully Scalable 3-D Overcomplete Wavelet Video Coding

[vanderSchaar, Andreopolous, Ye '02]

- ·Different prediction structures per resolution/subband
- Different accuracy of the motion estimation is possible
- Different prediction structures per resolution/subband
- Different GOP structures
- Enables backwards compatibility with DCT standards
- Complexity adaptation per resolution

25 Spatial scalability in wavelet video coders

Spatial scalability

Conventional

Our

IBMCTF (2D+t)

Our results	Shuttle	Start			
Codee / Bitrates (kbps):	475	753	1335	2387	
SDMCTF/Mean PSNR (dB):	41.32	42.64	43.83	44.46	
IBMCTF/Mean PSNR (dB):	41.78	43.28	44.68	45.52	
MPEG-4 AVC/Mean PSNR (dB)	40.38	41.81	43.25	44.72	
Raven					
Codec / Bitrates (kbps):	1010	1651	3041	5438	
SDMCTF/Mean PSNR (dB):	38.37	39.90	41.52	42.59	
IBMCTF/Mean PSNR (dB):	38.47	40.20	41.99	43.23	
MPEG-4 AVC/Mean PSNR (dB):	38.33	39.86	41.47	43.11	
Soccer					
Codec / Bitrates (kbps):	1909	3001	5250	9246	
SDMCTF/Mean PSNR (dB):	35.76	37.33	38.96	40.79	
IBMCTF/Mean PSNR (dB):	35.71	37.47	39.25	41.22	
MPEG-4 AVC/Mean PSNR (dB):	37.01	38.60	40.30	42.13	
City					
Codec / Bitrates (kbps):	1202	2148	4869	10865	
SDMCTF/Mean PSNR (dB):	36.35	38.10	39.80	41.11	
IBMCTF/Mean PSNR (dB):	<u>36.61</u>	<u>38.41</u>	40.24	41.74	
MPEG-4 AVC/Mean PSNR (dB):	36.17	37.70	39.41	41.37	

27 MC Wavelet video coding - current status

- Major theoretical problems seem to be resolved, but ...
- ... the present status of development is not optimum
- ...optimization for visual improvement (deblocking etc.) needed

MPEG standardization – status?

Chair MPEG scalable video coding (mid-2002 --- begin 2005)

- AVC extension based on UMCTF
- Ad-Hoc Group on Interframe Wavelet Video Coding (chair)

- Scalable video coding using oriented transforms
- User-centric video coding
- Content-aware source activation and compression for multicamera surveillance applications (coherent source codebooks)
- Power-scalable compression algorithms

- Utility-cost functions for our proactive wireless media
- Encoder optimization (R-D, but also Complexity)
- Joint source-channel coding (cross-layer)

- Two types of methodologies
 - Empirical approach where experimental RD data is fitted to derive functional expressions [Liu '96][Zhang '97][Girod '00]
 - Analytical approach based on traditional RD theory [Sakrison '68][Mallat '98][Moulin '99,'01]
- Realistic R-D models for wavelet video missing [Wang, vanderSchaar '05]

Our analysis:

- Low pass temporal frames similar properties as images (based on work of Mallat, Moulin etc.)
- High pass temporal frames obey Laplacian distribution & Intra-scale dependency— doubly stochastic model leading to Markov property

$$X \sim N(0, \theta)$$

 $\Theta \sim p(\theta) = \frac{1}{\sigma^2} e^{-\frac{1}{\sigma^2}\theta}$

$$X \longrightarrow \Theta \longrightarrow \mathcal{N}X$$

- Features of context adaptive coding of detail subbands:
 - All the subbands are coded independently to achieve resolution scalability;
 - Uniform deadzone quantizer (deadzone: T, quantization step size: Δ) is used to quantize DWT coefficients X;
 - Two kinds of quantized coefficients:

(Coastguard sequence—3 spatial decomposition level)

Total coding bitrate subband (j,k):

 $\mathbf{R}_{j,k}(\upsilon) = \rho \mathbf{R}s(\upsilon) + \mathbf{Rzc}(\upsilon)$ $\upsilon = \Delta_{j,k}/\sigma_{j,k}$

Total frame bitrate:

$$\overline{\mathbf{R}} = \mathbf{4}^{-J} \mathbf{R} + \sum_{j,k} \mathbf{4}^{-j} \mathbf{R}_{j,k}$$

Collaborative framework for wireless multimedia

Goal: Construct a system, where users can borrow or lend resources from the system/other users, according to their specific utility and resource awareness.

· Utility: video quality, power, system-wide network utilization etc.

Strategies at different layers are collected into a composite strategy S:

$$S = \left\{ PHY_1, \dots, PHY_{N_p}, MAC_1, \dots, MAC_{N_M}, \dots \right\}$$

OSI Layers

Application

Presentation

Session

Transport

Network

Data Link MAC

Physical

• RF

- Transmit power
- Antenna direction
- Baseband
 - Modulation
 - Equalization
- Link/MAC
 - Error correction coding
 - ARO
 - Admission Control and Scheduling
 - Packetization
- Transport/Network
 - TCP/UDP
 - Packetization
- Application
 - Compression strategies
 - Rate/Format adaptation
 - FEC/ARQ
 - Scheduling
 - Packetization

Determine the optimal composite strategy

$$S^{opt}(\mathbf{x}, mc) = \arg \max_{S} Q(S(\mathbf{x}), mc)$$

subject to constraints

$$Delay(S(\mathbf{x}), mc) \leq D_{\max} \text{ and } Power(S(\mathbf{x}), mc) \leq Power_{\max}$$

given instantaneous channel conditions $\mathbf{x} = (SNR, contention)$, multimedia content characteristic mc, maximum tolerable delay D_{max} and maximum power $Power_{max}$. Why is finding the optimal solution to this cross-layer optimization problem difficult?

Why is finding the optimal solution to this cross-layer optimization problem difficult?

- Deriving analytically Q, Delay, Power is often difficult and sometimes these functions are not deterministic (only worst/average values can be determined) and non-linear;
- some of the strategies PHYi, MACi, Transi, Appi depend on other strategies deployed at the same or other layers.;
- the wareless channel conditions may change continuously;

Why is finding the optimal solution to this cross-layer optimization problem difficult?

- Deriving analytically Q, Delay, Power is often difficult and sometimes these functions are not deterministic (only worst/average values can be determined) and non-linear;
- some of the strategies PHYi, MACi, Transi, Appi depend on other strategies deployed at the same or other layers.;
- the wireless channel conditions may change continuously;
- the multimedia traffic characteristics vary dynamically;
- different power and implementation constraints;.
- interaction among stations

Goal: formal procedures need to be established for optimal initializations, grouping of transmission strategies at different stages, and ordering etc

Classification of cross-layer solutions [vanderSchaar, Shankar '05]

38

Cross-layer video optimization

[Li, vanderSchaar '03][[vanderSchaar, Choi, Krishnamachari '03] [Shankar, vanderSchaar '04][Krishnaswamy, vanderSchaar '04][vanderSchaar, Shankar '05]

Application . Presentation Session **Transport** Network Data Link MAC Physical

Examples

- MAC retransmission limit adaptation, packetization
- Application packetization, rate adaptation and prioritized scheduling strategies
 - Cross-layer MAC+ Application layers

39 Does cross-layer optimization help?

 Example: MAC research (e.g. Choi et al, Goldsmith et al) has shown the importance of adapting the packet-size L

39 Does cross-layer optimization help?

 Example: MAC research (e.g. Choi et al, Goldsmith et al) has shown the importance of adapting the packet-size L

$$P_e^m(L) = 1 - (1 - p_b^m)^L$$

Throughput =
$$\frac{L}{L + L_{m}^{header}} * (1 - P_{e}^{m}(L))$$

Optimal packet-size determined by MAC:

$$L' = \frac{-L_{\bullet}^{header} + \sqrt{\left(L_{\bullet}^{header}\right)^2 - \frac{L_{\bullet}^{header}}{2\log(1 - p_b^m)}}}{2}$$

39 Does cross-layer optimization help?

 Example: MAC research (e.g. Choi et al, Goldsmith et al) has shown the importance of adapting the packet-size L

$$P_e^m(L) = 1 - (1 - p_b^m)^L$$

Apply this solution to wireless video

Throughput =
$$\frac{L}{L + L_{m}^{beacker}} * (1 - P_{e}^{m}(L))$$

Optimal packet-size determined by MAC:

$$L = \frac{-L_{a}^{header} + \sqrt{\left(L_{a}^{header}\right)^{2} - \frac{L_{a}^{header}}{2\log(1 - p_{b}^{m})}}}{2}$$

p_b^m	PSNR for L= 500 bytes	PSNR for L=1000 bytes	PSNR for L* determined by MAC
0.000006	32.86	30.65	27.90
0.000010	30.93	28.10	31.20
0.000030	28.76	25.43	26.86
0.000050	24.01	23.09	25.12

optimization

Video characteristics

Constant arrival rate of multimedia packets A

Channel characteristics

- Packet loss probability (at the PHY) without retransmissions P
- Service rate of the link C
- Link packet erasure rate (after T retransmissions) $p_L(T,P) = P^{T+1}$
- Mean number of transmissions $s(T, P) = \frac{1 P^{T+1}}{1 P}$
- Effective utilization factor of the link $\rho(P) = \lambda/C(1-P)$
- Buffer overflow rate $p_B(T, P) = \frac{\lambda s(T, P) C}{\lambda s(T, P)} = 1 \frac{1}{\rho(P)} \frac{1}{1 P^{T+1}}$

42 Fluid Model

The overall loss rate

$$p_{T}(T,P) = p_{B}(T,P) + p_{L}(T,P) = 1 - \frac{1}{\rho(P)} \frac{1}{1 - P^{T+1}} + P^{T+1}$$

P-fixed Monotonically Increasing

Monotonically Decreasing

42 Fluid Model

The overall loss rate

$$p_{T}(T, P) = p_{B}(T, P) + p_{L}(T, P) = 1 - \frac{1}{\rho(P)} \frac{1}{1 - P^{T+1}} + P^{T+1}$$

P - fixed Monotonically Increasing

Monotonically Decreasing

Optimal retry limit

- multimedia traffic characteristics, channel conditions, Buffer sizes
- →Requires Real-time Adaptation [Li, vanderSchaar '03])

43 How to perform cross-layer video optimization?

$$S^{opt}(\mathbf{x}, mc) = \arg\min_{S} D(S(\mathbf{x}), mc)$$

Application layer: Prioritization, Scheduling, Packet size

MAC: Retransmission

Joint Application-MAC cross-layer optimization

Expected associated distortion

$$\overline{D}_{p,s} = P(succ) \times D_{p,s}^{Quant,R} + P(fail) D_{p,s}^{loss}$$

Expected number of transmissions for any packet

$$\overline{T} = \sum_{t=1}^{T_{\text{max}}+1} t p_L^{t-1} (1 - p_L) + P(fail) (T_{\text{max}} + 1)$$

Expected additional transmission rate (overhead)

$$\overline{R}_{p,s} = (\overline{T} - 1)L_{p,s} + L^{Header}$$

Cross-layer optimization problem

$$\left(T_{\max,s}^{opt}, L_s^{opt} \right) = \underset{(T_{\max},L)}{\operatorname{arg\,min}} \left[\sum_{p=1}^{P_s} \left(\overline{D}_{p,s} + \lambda \overline{R}_{p,s} \right) \right]$$

45 Joint Application-MAC cross-layer optimization

Retransmission limits for different priority packets $\mathbf{T} = \begin{bmatrix} T_1 & \dots & T_N \end{bmatrix}$

Average number of link retransmissions $\mathbf{s} = \begin{bmatrix} s_1(T_1, P) & \dots & s_N(T_N, P) \end{bmatrix}$

Departure rates from queues to the link (APP layer R-D scheduling)

$$\Lambda = \begin{bmatrix} \Lambda_1 & \dots & \Lambda_N \end{bmatrix}$$

System-wide average packet retransmissions

$$\overline{s}(\mathbf{T}, P) = \frac{\mathbf{\Lambda} \cdot \mathbf{s}(\mathbf{T}, P)}{\mathbf{\Lambda} \cdot \mathbf{1}} \qquad \mathbf{1} = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}^T$$

Overflow rate of the multiqueue system $p_B(\mathbf{T}, P) = \frac{\lambda s(\mathbf{T}, P) - C}{\lambda \overline{s}(\mathbf{T}, P)}$

Link erasure rate $p_{L}(\mathbf{T}, P) = P^{T+1}$

45 Joint Application-MAC cross-layer optimization

Retransmission limits for different priority packets $\mathbf{T} = \begin{bmatrix} T_1 & \dots & T_N \end{bmatrix}$

Average number of link retransmissions $\mathbf{s} = [s_1(T_1, P) \dots s_N(T_N, P)]$

Departure rates from queues to the link (APP layer R-D scheduling)

$$\Lambda = \begin{bmatrix} \Lambda_1 & \dots & \Lambda_N \end{bmatrix}$$

System-wide average packet retransmissions

$$\overline{s}(\mathbf{T},P) = \frac{\boldsymbol{\Lambda} \cdot \mathbf{s}(\mathbf{T},P)}{\boldsymbol{\Lambda} \cdot \mathbf{1}} \qquad \mathbf{1} = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}^T$$
 Overflow rate of the multiqueue system
$$p_{\mathcal{B}}(\mathbf{T},P) = \frac{\lambda \overline{s}(\mathbf{T},P) - C}{\lambda \overline{s}(\mathbf{T},P)}$$
 Link erasure rate
$$p_{r}(\mathbf{T},P) = P^{T+1}$$

MAC shadow retry limit -> retransmission limit vector Tsrl

Actual retransmission limit vector Tre (with unequal elements)

Iterative algorithm [Li and vanderSchaar '03] for computing Tre

- We evaluate the impact of these strategies on the perceived video quality by performing a visual experiment according to CCIR Recommendation 500-4
- selected five scales are:
 - very annoying (1),
 - annoying (2),
 - slightly annoying (3),
 - perceptible but not annoying (4),
 - imperceptible (5).

Deployed strategies	Visual Score
No optimization at MAC & App. MAC layer optimization (RTRO) Application layer optimization Joint Application-MAC cross- layer optimization	1.4 1.9 3.8 4.6

47 Cross-layer solutions – new solution needed

Cross-layer solutions – new solution needed

- Integrated optimization approach very complex -> unsuitable for real-time multimedia
- Current solutions: ad-hoc heuristics
- Our new approach [Wong, vanderSchaar, Turaga '05]
 - Determine OFFLINE optimal cross-layer solution for classes of content, channel conditions, protocol implementation
 - Use ON-LINE classification techniques to choose the optimized solution
 - Video and Channel features -> Strategy choices
 - This de-facto solution can be used as is or further improved (i.e. serve only as initialization) -> Learn on the fly new, improved solutions
 - Another advantage: user subjective metrics (not PSNR) can be used

48 Cross-layer results using classification

$$P(fail) = 0.1$$

49 Future research

- Wireless and Internet multimedia communication with Resource and Information Exchanges
- Multimedia compression and communication over OSAR
- Content-Aware Multi-camera systems

 Formal Methods for Designing and Optimizing Multimedia algorithms on resource-constrained (embedded) systems

Collaborative framework for wireless multimedia

Goal: Construct a system, where users can borrow or lend resources from the system/other users, according to their specific utility and resource awareness.

51 New proactive framework for wireless multimedia

- Fairness based on contention resolution protocols [vanderschaar, Shankar '05]
 - Workload- Generalized Processor Scheduler [Gallager]

$$\frac{W_i(t_1,t_2)}{W_j(t_1,t_2)} \ge \frac{\phi_i}{\phi_j}, j = 1,2,...$$
Number of WSTAs

GPS advantages (guaranteed throughput, independent service) cannot be preserved if WSTAs use different cross-layer optimization strategies

- Air-Time Fairness
- For multimedia: Delay or Distortion Fairness

52 Distortion Fair Scheduling

$$\frac{D_i(t_1, t_2)}{\phi_i} \ge \frac{D_j(t_1, t_2)}{\phi_j}$$

How to Provide Distortion Fair transmission time?

- Rate-Distortion models needed
- Use equal distortion, or different quality "levels"

Football (SD - resolution, 30 Hz), 2 Mbps, 400ms Delay

GPS Air-time Distortion

GPS Air-time Distortion Fairness Fairness

Do conventional information theory results for wireless communications hold for multimedia?

[Scaglione, vanderSchaar '05]

Opportunistic MAC or Longest Queue Highest Rate?

57 New proactive framework for wireless multimedia

Fair resource management, but passive resource allocation

57 New proactive framework for wireless multimedia

Fair resource management, but passive resource allocation

 Proactive resource management based on coopetition among WSTAs [NSF Career] –

borrows ideas from on-line algorithms, game theory

- Wireless multimedia game played between the competing WSTAs with no, partial or full information and different utility-cost functions
- Significant improvements in quality and system resource utilization possible [Larcher, vanderschaar '04][sood, vanderschaar '05]

Formal Methods for Designing and Optimizing Multimedia Systems

Limitation of existing approaches

- Systems are designed based on worst-case scenarios for multimedia
- System layer currently does not cooperate with the multimedia applications to achieve optimal R-D-C tradeoffs
- Currently only ad-hoc solutions for R-D-C optimization
- Coarse levels of multimedia complexity (profiles)

59

63 Conclusions

- Multimedia unprecedented challenges and new research opportunities for
 - Compression and representation
 - Real-time wireless transmission
 - System design (considering hardware/software implementation issues is critical)

- Multimedia unprecedented challenges and new research opportunities for
 - Compression and representation
 - Real-time wireless transmission
 - System design (considering hardware/software implementation issues is critical)
- Multi-discilinary research needed
- Need for formal methods and theory
- Optimization theory, micro-economics concepts are helpful

A new chance to significant improve and reinvent multimedia compression & processing & communication & system design in a cross-layer framework!

Preparing to stand by...

