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Al Overview

* Challenges for wireless multimedia -> Research focus

* Scalable video coding and processing
* Cross-layer optimized wireless multimedia
* Proactive collaboration for wireless multimedia

* Research directions beyond this talk
* A new chance to reinvent multimedia compression, processing,
communication & system design!
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* Emergency services

* Surveillance

* Telemedicine

* Videoconferencing

* Remote teaching and training
* Augmented reality

* Distributed gaming

~ STARBUCKS

=

WAYPORT

Hard delay constraints!
High bandwidth!
Loss tolerant!
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Wireless networks provide limited QoS for mulftimedia applications

Dynamic QoS requirements
+ application constraints (delay. rates) and characteristics (codec used....)

- multimedia traffic characteristics
* usage scenarios
- user preferences
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Dynamic QoS requirements
+ application constraints (delay, rates) and characteristics (codec used....)

- multimedia traffic characteristics
* Usage scenarios
- user preferences

Wireless stations (WSTA) experience time-varying channel
conditions

WSTA adopt different cross-layer strategies
WSTA transmission strategy influences the network dynamics
Tradeoff between fairness and efficiency




ISl Challenges

Wireless networks provide limited QoS for multimedia applications

Dynamic QoS requirements
« application constraints (delay, rates) and characteristics (codec used....)

- multimedia traffic characteristics
* usage scenarios
-« user preferences

Wireless stations (WSTA) experience time-varying channel
conditions

WSTA adopt different cross-layer strategies
WSTA transmission strategy influences the network dynamics
Tradeoff between fairnessiand efficiency

Unique constraints of multimedia applications change
fundamental communication design principles




Il Existing theory

* Information and coding theory [Shannon and beyond]

E

-

“ideal” point-to-point communication setting

simplistic source models -> not accurate for multimedia coders

no delay constraints (concept of “streaming” is absent)

no resource management issues and policies such as fairness, etc.

system issues neglected — essential for realistic wireless multimedia
communications

* Complexity Distortion Theory [Kolmogorov and beyond]

-

simplistic source models -> not accurate for multimedia coders

na consideration of the limitations, capabilities and specific features
of (resource-constrained) systems and architectures

* Optimization, Control, Microeconomic Theory
* On-line algorithms, competitive analysis efc.
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Contribute towards the development of a unifying theory, design
and implementation of realistic multimedia communication systems




I3 Our research aim

Contribute towards the development of a unifying theory, design
and implementation of realistic multimedia communication systems

Objectives (NSF Career)

* Traditional resource management passively optimizes resources
. Based on fixed, worst-case resource reguirements
- Do not consider the impact on other WSTAs
e Do not consider realistic multimedia utility-cost functions

* Proactive collaboration among competing wireless stations
* Influence system dynamics through resource/information exchanges

* Users collaborate and even sacrifice short-term performances, with
the incentive that overall system performance can be improved and
users temporary sacrifices will be paid back in a long term

*  Why coopetition for multimedia?
* Losstolerant, delay sensitive, power sensitive




Objectives (cont.)

* Resource exchanges enabled through adapting cross-layer
transmission strategies of participating stations

* new cross-layer algorithms that explicitly consider multimedia

* Rate-Distortion-Power scalable multimedia coding and streaming

* Formal Methods for Proactively Designing and Optimizing
Multimedia Systems
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Contribute towards the development of a unifying theory, design
and implementation of realistic multimedia communication systems

Objectives (NSF Career)

* Traditional resource management passively optimizes resources
. Based on fixed, worst-case resource reguirements
- Do not consider the impact on other WSTAs
e Do not consider realistic multimedia utility-cost functions

* Proactive collaboration among competing wireless stations
* Influence system dynamics through resource/information exchanges

* Users collaborate and even sacrifice short-term performances, with
the incentive that overall system performance can be improved and
users’ temporary sacrifices will be paid back in a long term

*  Why coopetition for multimedia?
* Loss tolerant, delay sensitive, power sensitive




Objectives (cont.)

* Resource exchanges enabled through adapting cross-layer
transmission strategies of participating stations

* new cross-layer algorithms that explicitly consider multimedia

* Rate-Distortion-Power scalable multimedia coding and streaming

* Formal Methods for Proactively Designing and Optimizing
Multimedia Systems




Collaborative framework for wireless multimedia

Goal: Construct a system, where users can borrow or lend resources from the

system/other users, according to their specific utility and resource awareness.

s

Wireless
STA

R-D-C
Scalable

Video

Coding

- Maximize the individual WSTA performance and
- Maximize the system-wide spectrum utilization

Cross-layer
Optimized

Transmission

Strategies




EM It all started with Scalable Video ....

Prior Scalable Video Coding standards - Not efficient

for heterogeneous |P networks
* Coarse Granularity Scalahility (Operate at a discrete set of bit-rates)
* Limited coding efficiency
* Qverhead increases with the number of layers

What is important for multimedia communication
over IP networks?

* On-the-fly & efficient adaptability to bandwidth variations, QoS levels
* Adaptation to different user & device requirements
* Complexity-scalable encoding/decoding

.“:\'{




M It all started with Scalable Video ....

Prior Scalable Video Coding standards - Not efficient

for heterogeneous |P networks
* Coarse Granularity Scalability (Operate at a discrete set of bit-rates)
* Limited coding efficiency
* Qverhead increases with the number of layers

What is important for multimedia communication
over IP networks?

* On-the-fly & efficient adaptability to bandwidth variations, QoS levels
* Adaptation to different user & device requirements
* Complexity-scalable encoding/decoding

Our first solution - A new coding paradigm

Fine-Granularity Scalability (FGS)
[vanderSchaar - PhD thesis, '01]




il FGS - embedded video coder (Successive reﬁnement)

Goal: Achieve optimal description at each encoding
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FGS - embedded video coder (Successive refinement)

Goal: Achieve optimal description at each encoding stage
1980 Koshelev proved that 310, .. BE

R-D problem is successively EfdXX <P, i=12
refinable if individual solutions I(X: X )= R( D: Y

of the R-D problem can be

_ _ X ©>» X, <> X, 15 a Markov cham
written as a Markov chain B

= {D,,D,,R(D,),R(D,)} 1s achievable

1991 Equitz & Cover proved that the condition is also necessary.




FGS - embedded video coder (Successive refinement)

Goal: Achieve optimal description at each encoding stage
1980 Koshelev proved that 3@ .. &E

R-D problem is successively Efd(XX )}<D,., i=12
refinable if individual solutions I(X: X} R(.D) i1

of the R-D problem can be

: _ X ©>» X, <> X, 15 a Markov cham
written as a Markov chain =

= {D,,D,,R(D,),R(D,)} is achievable

1991 Equitz & Cover proved that the condition is also necessary.

* Video sources are NOT successively refinable with respect to the PSNR
distortion metric ®

* Evenif a source is not successively refinable, the penalty for FGS
embedded coding is small @




(il Fine-Granular-Scalability (FGS) in MPEG4




Fine-Granular-Scalability (FGS) in MPEG4

* Widely researched .....
Web search on “FGS coding” generates more than 2000 links
* Most used scalable coder for multimedia communication research
* Sessions dedicated to FGS at major |[EEE conferences (ICIP, ICME etc.)

FGS opened a broad area of research (PhD theses based on FGS)
= Optimal rate-allocation strategies (rate-shaping etc.)
* Joint source-channel coding of FGS streams
- Efficient streaming algorithms




Fine-Granular-Scalability (FGS) in MPEG4

However, FGS had coding efficiency penalty & no spatial scalability




Wavelets and motion compensation

* Wavelet transform coding for still images (e.g. JPEG 2000)
-> Extension to video coding (3D wavelet video)

* Using transforms for interframe coding goes back to ‘70s, ‘80s
(e.g. Karlsson/Vetterli)

* Drawback was lack of motion compensation

* Motion compensation is key to achieve high compression & visual
quality, but difficult




Wavelets and motion compensation

* Wavelet transform coding for still images (e.g. JPEG 2000)
-> Extension to video coding (3D wavelet video)

* Using transforms for interframe coding goes back to ‘70s, ‘80s
(e.g. Karlsson/Vetterli)

* Drawback was lack of motion compensation

* Motion compensation is key to achieve high compression & visual
quality, but difficult

Qur contributions

* Unconstrained Motion Compensated Temporal Filtering (UMCTF)
* Fully Scalable 3-D Overcomplete Wavelet Video Coding

* 3-band temporal lifting structures

* Spatio-tempaoral MV scalability

* Rate-Distortion Optimized Anisotropic Motion Representation

* User-centric tradeoffs for spatio-temporal-SNR scalability

* Multiple Description Scalable Video Coding based on UMCTF




viotion compensated tempora
background [Ohm 93]

video sequence
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viotion compensated tempora
background [Ohm ‘93]
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Jnconstrained — Adaptive temporal Tiitering
[vanderSchaar and Turaga 02]

Predict
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Jnconstrained i — Adaptive temporal Titering
[vanderSchaar and Turaga '0Z]
Predict
.1 UMCTF weights Lifting parameters
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Update -
Temporary Update Frame Llﬂlﬂg parameters
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Connectivity Map

Updated Frame
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max{e, [m,n] 7 (A1}




il Example: Three-band decomposition structure with bi-
directional predict operators [Tilier. Pesquet, vanderSchaar '03]
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I8 Example: Three-band decomposition structure with bi-
directional predict operators [Tilier. Pesquet, vanderSchaar '03]
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(g Ynconstrained Iy — Adaptive temporal titering
[vanderSchaar and Turaga '0Z]
Predict
.-y UMCTF weights  Lifting parameters
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Update -
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il Example: Three-band decomposition structure with bi-
directional predict operators [Tilier. Pesquet, vanderSchaar '03]
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UMCTF improvements

SDMCTF. Coastguard (CTF). 128 frames
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il Addressing Resolution Scalability in Video Transmission

Fundamental Problem
In the Conventional MCTF motion compensation and spatial
filtering are not commutative

Low-resolution output Inverse Update & Predict steps

-
-
=

Intra-band Dequantization and Decoding .-

L]

[nput bitstream lavers

Spatial reconstruction




iEl Wavelet Transform (WT) - before or after MC?




iEl Wavelet Transform (WT) - before or after MC?

* Conventional: WT after MC - t+2D (SDMCTF)

&

Limited complexity ©
Spatial scalability is not very efficient @
For block-based ME, Intra/Inter mode switch is not very efficient @

Discontinuities in the motion boundaries (blocking artefacts) are
represented as high-frequency content in the high-frequency wavelet
subbands @

ME accuracy is fixed for all spatial resolutions @

same temporal decomposition scheme for all spatial subbands @




Wavelet Transform (WT) - before or after MC?

* Conventional: WT after MC - t+2D (SDMCTF)

&

Limited complexity ©
Spatial scalability is not very efficient @
For block-based ME, Intra/Inter mode switch is not very efficient @

Discontinuities in the motion boundaries (blocking artefacts) are
represented as high-frequency content in the high-frequency wavelet
subbands @

ME accuracy is fixed for all spatial resolutions @
Same temporal decompaosition scheme for all spatial subbands ©

* Our solution: WT before MC - 2D+t (IBMCTF)

Multiple (separate) MC loops for wavelet bands ©
No drift problem in spatial scalability ©
Switching to "intra" coding mode without penalty ©
Inefficiency of MC prediction in high bands &

+ due to shift variance of frequency-inverting alias




Justification for the use of Overcomplete DWT (ODWT)

o How does one perform in-band prediction and update?

o What necessitates the use of overcomplete transforms?
The “AdHoc™ solution




ification for the use of ODWT
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Justification for the use of OD
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samples Xo(2%) = %(X(E) + X(-2))

The odd Xl(zi? = %3_1 (X(z) — X(—2))

samples

A(2%) = 3(H(2) X(2) + H(-2)  X(-2))



Justification for the use of OD
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Justification for the use of ODWT

* Example for MC prediction problem in context of alias :
Haar filter output of step edges

Signal Haar-DWT Haar-ODWT
(I (Tl
tene Lt e —— v —w ey v
“vrYY TYRYYT - =
H1 —v—e ¥ —r—> —wvyrTryrTewyr—
"
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Fully Scalable 3-D Overcomplete Wavelet Video Coding
[Andreopolous, vanderSchaar '02,'03] [Ye, vanderSchaar '02]

Video

| Motion I

Estimation

=P ]
H
- 4

=

Bitstream

-

Motion

Coding [




Justification for the use of ODWT

* Example for MC prediction problem in context of alias :

Haar filter output of step edges

Signal Haar-DWT
e
R L —
“FFEY TYFWYY |

Sional shufted

by one pivel

111 I_I N - W .F

H1 L w W -'

Hazar-OOWT

Prediction possible
in any case !




Fully Scalable 3-D Overcomplete Wavelet Video Coding
[Andreopolous, vanderSchaar '02,'03] [Ye, vanderSchaar '02]
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pryg Fully Scalable 3-D Overcomplete VWavelet Video Coding
[vanderSchaar, Andremp-::lous Ye '02]
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-Different prediction structures per resolution/subband
Different accuracy of the motion estimation is possible
-Different prediction structures per resolution/subband
«Different GOP structures

+Enables backwards compatibility with DCT standards
-Complexity adaptation per resolution




Fully Scalable 3-D Overcomplete Wavelet Video Coding
[Andreopolous, vanderSchaar '02,'03] [Ye, vanderSchaar '02]
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ully Scalable 3-D Overcomplete VWavelet Video Coding
[vanderSchaar, Andreopolous, Ye 0Z]
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-Different prediction structures per resolution/subband

-Different accuracy of the motion estimation is possible
-Different prediction structures per resolution/subband

-Different GOP structures

+Enables backwards compatibility with DCT standards

-Complexity adaptation per resolution




Spatial scalability in wavelet video coders
Conventional Our
SDMCTF (t+2D) IBMCTF (2D+t)

Spatial scalabilitv




mur rESlI“.'S ShuttleStart

Codee / Bitrates (kbps): i5 | 753 1335 2387
SDMCTF/Mean PSNR. (dB). 41 32 | 42 4 43 83 dd 44
IBMCTE/Mean PSNR. (dB) 4178 | 43 98 44.68 45 52

MPEG-4 AVC [ Mean PSHNE (dB): 40 38 41 81 4323 44 72
Raven

Codec / Bitrates (kbps): 1010 | 1651 3041 5438
SOMCTF/Mean PSNR.(dB) 3837 | 39.90 4152 42 59
IBMCTF/Mean PSNR (dB) 3847 40 20 4199 43 2

MPEG-4 AVC /Mean PSNR (dB) 3833 ; 39 86 4147 4311
Soccer

Codec [ Biteates (kbps): 1000 | 3001 5250 9246
SDMCTF/Mean PSNE. (dB) 3310 .33 38.96 4079
IBMCTF/Mean PSNR (dB) 3571 37 47 3925 4122

MPEG-4 AVC /Mean PSNE. (dB): 3701 , 38.60) 40 30 42 13
City

Codee / Bitrates (kbps): 1202 2148 4869 1865
SDMCTF/Mean PSNE. (dB). 36.35 | 38.10 39 80 4111
IBMCTF/Mean PSNR (dB) 3661 | 84 40 24 4174

MPEG-4 AVC /Mean PSNE. (dB) 3617 | A7 70 39 41 41 37




MC Wavelet video coding - current status

* Major theoretical problems seem to be resolved, but ...

* ... the present status of development is not optimum
* ...optimization for visual improvement (deblocking etc.) needed

MPEG standardization — status?

Chair MPEG scalable video coding (mid-2002 — begin 2005)
* AVC extension based on UMCTF
* Ad-Hoc Group on Interframe Wavelet Video Coding (chair)




8]

(Ml Our new work on video compression & processing

* Scalable video coding using oriented transforms
* User-centric video coding

* Content-aware source activation and compression for multi-
camera surveillance applications (coherent source
codebooks)

* Power-scalable compression algorithms



Why Operational R-D models?

* Utility-cost functions for our proactive wireless media
* Encoder optimization (R-D, but also Complexity)
* Joint source-channel coding (cross-layer)

* Two types of methodologies

* Empirical approach - where experimental RD data is fitted to
derive functional expressions [Liu ‘96][Zhang 97 ][Girod '00]
* Analytical approach — based on traditional RD theory

[Sakrison ‘68][Mallat ‘98][Moulin '99,'01]

* Realistic R-D models for wavelet videa — missing
[Wang, vanderSchaar '05]




EIM Operational R-D models for wavelet video

Our analysis:

* Low pass temporal frames — similar properties as images
(based on work of Mallat, Moulin etc.)

* High pass temporal frames — obey Laplacian distribution &
Intra-scale dependency— doubly stochastic model leading to
Markov property

X ~ N(0.8)
X —08—7NX

1
=~ ;JHF: = —@




EIl Bit Rate Estimation

* Features of context adaptive coding of detail subbands:

All the subbands are coded independently to achieve resolution

scalability;

— Uniform deadzone quantizer (deadzone: 7, quantization step
size: /\ ) 1s used to quantize DW1 coefficients _\ ;

— Two Kinds of quantized coefficients:
Significant

coeflicients

: ql X )= 0 e——-

Sign'magnitude
refmement coding
primiive

Ld

X it ———y = |
o Non-significant
coefficients Zero coding

=0 — primitive

Al




(Coastguard sequence—3 spatial decomposition level)

MK

e

Total coding hitrate subband (j,k): Total frame bitrate:
R ;(v)= pRs(v)+ Rzelv) R=4"R+ ?_I_JR;,R
D= _ll'l. e 1":5 - J..
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Collaborative framework for wireless multimedia

Goal: Caonstruct a system, where users can borrow or lend resources from the

system/other users, according to their specific utility and resource awareness.

Dynamic Collaboration/Resource Exchange Among Stations

- Maximize the individual WSTA performance and
- Maximize the system-wide spectrum utilization

( R-D-C Cross-layer

Wireless Scalable Optimized

STA Video Transmission

Coding Strategies




g Conceptual Framewor
(System View of Cross Layer Optimization)

S e el
INFUT - Multimedia
(LONTEeEnt Characiaristics I——?.||.E|I-:-=ZI L0S elc

| Constraints

|

Different Layer ——— .
Parameters N .. *—— (Delay, Power,
g “Fairness’ etc.)

_—

(the degree of
adaptability |
Jutput

can be limted)

- Utility: video quality, power, system-wide network utilization etc.




geg Strategies at different layers are collected into a
composite strategy S:

S={PHY,,...,PHY y ,MAC,,...,.MACy, ,..{

Npe ™77
_ * RF
OSI Layers * Transmit power
* Antenna direction
- * Baseband
*  Maodulation
~ Presentation | * Equalization
* Link/MAC
* Error correction coding
* ARQ
Transport | * Admission Control and

Scheduling

* Packetization
* Transport/Network

* TCPMUDP

* Packetization
* Application

* Compressian strategies
Rate/Format adaptation
FEC/ARQ
Scheduling
Packetization

L] - L -




El Cross-layer optimization — problem definition

Deternune the optumal composite strategy

51!3_;':"5 (X_mic)= ﬂlg max {:‘,}l ,,'){ X).Hc)

B

:'il'lbj ect o constraints
.DL’L’U (S(X).mc) = ‘Dmax and Powert S{_ X ). mic) _JT:}LTH'L’.T;H}:

given mstantaneous
channel conditions x = (SNR, contention) .

multimedia content characternstic mc.
maxinnimn tolerable delay *'Dm

- and maxanmum power Powe £ .




Why is finding the optimal solution to this cross-layer
optimization problem difficult?




Why is finding the optimal solution to this cross-layer
optimization problem difficult?

* Denving analytically Q, Delay, Power is often difficult and sometimes
these functions are not deterministic (only worst/average values can be
determined) and non-linear;

* some of the strategies PHYi, MACi. Transi. Appi depend on other
strategies deployed at the same or other layers.;
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Why is finding the optimal solution to this cross-layer
optimization problem difficult?

* Denving analytically Q, Delay, Power Is often difficult and sometimes
these functions are not deterministic (only worst/average values can be
cdetermined) and non-linear:

* some of the strategies PHYi, MACi. Transi. Appi depend on other
strategies deployed at the same or other layers.;

* the wireless channel conditions may change continuously;
* the multimedia traffic characteristics vary dynamically;

* different power and implementation constraints;.

* Interaction among stations

Goal: formal procedures need to be established for optimal initializations,
grouping of transmission strategies at different stages, and ordering etc

Classification of cross-layer solutions [vanderSchaar, Shankar '05]




ross-iayer video optimization
[Li, vanderSchaar '03][[vanderSchaar, Choi, Krishnamachari '03]

[Shankar, vanderSchaar '04][Krishnaswamy, vanderSchaar
‘04][vanderSchaar, Shankar 03]

Application Examples

l

s
' % * MAC - retransmission limit adaptation,
""J packetization
Transport ) Application - packetization, rate
;_; adaptation and prioritized scheduling
Network F strategies
/
j * Cross-layer — MAC+ Application
Data Link : layers

MAC

Physical




ECH Does cross-layer optimization help?

* Example: MAC research (e.g. Choi et al, Goldsmith et al) has
shown the importance of adapting the packet-size L




EFH Does cross-layer optimization help?

* Example: MAC research (e.g. Choi et al, Goldsmith et al) has
shown the importance of adapting the packet-size L

Pr@L)=1-0-p])
Throughput = ————_*(1— P*(L))
¥

F

Optimal packet-size determined by MAC.

r - -
| L st =
i

5

rheader N heoder} -
e +V(" ) 2logl- p;
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ECH Does cross-layer optimization help?

* Example: MAC research (e.g. Choi et al, Goldsmith et al) has
shown the importance of adapting the packet-size L

}1”3 (L) =1— (1 — p;" )~ Apply this solution to wireless video
I m PSNR for | PSNR for PSNR for L*
- £{1_ pm [ =500 [=1000 bytes | determined
Throughput = [+ [ 1-£(L) p b | bytes by MAC

Optimal packet-size determined by MAC: 0.000006 37 86 3065 57 90
e headse 0.000010 | 3093 28.10 3120
o i.l':mc'.sr ;. (i-:m:w) = - _ = e nE AT ——
= - - 2logQ- p7) 0. 000030 28 .16 2543 26 .86
= 2 0.000050 24.01 2309 2512
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[l Fluid Model (similar results using M/G/1 model)

Video characteristics

* Constant arrival rate of multimedia packets 4

Channel characteristics

* Packet loss probability (at the PHY) without retransmissions P
* Service rate of the link

i i
I &

* Link packet erasure rate (after T retransmissions) p;(1.F)=F"

- P
1-P

* Mean number of transmissions (7. P)=

* Effective utilization factor of the link 2(F)= A/ C(1-F)

* Buffer overflow rate },—.3..319,;”"'“?}?}_{ — : 1

As(T, P) p(P)1- P




Fluid Model
* The overall loss rate
| | T
o(P) 1- P

. P =T P (. 2) =1

P — fixed Monotonically Monotonically

Increasing Decreasing
£ =04 A=32Mbps

[ogate

" - "




Fluid Model
* The overall loss rate
l !
o(P)1- P

pr(T.P)=ps(T.P)+p (T.P)=1-

P — fixed Monotonically Monotonically
Increasing Decreasing
£ =04 A=32Mbps

™ e
i " Sl
- & ot

Optimal retry limit

* multimedia traffic 1
characteristics, = log (1 - )—1

channel conditions, ¢ - JC(I P)IA
Buffer sizes 1 /
—Requires Real-time .
Adaptation [Li, = fo
vanderSchaar ‘03]) | 5/ B =p (™)




How to perform cross-layer video optimization?

|
Layered video L-PQ MAC
Pkt filter chain Quenes | | Retry limit settings |
| Laver 5 ptifhdiop ) | ~»{rt_Imt S ~»
Laver 4 S ot SRS r=-p — it Imt 4 —»
| | Layer 3 a ---7---1""!- | | rn imt 3 >
| Layer 2 H +-~f S R i >t Imt 2 >
Layer | S REm e i rt_Imt_| |
! Layer adaptation | —L'F f Pkt purging: RTRA |
Iy | 4 '

| _

| - |

|
" Failed packets j¢—— |
—bbwrﬂcm' rates of all qucues

Feedback from decoder side for layer adaptation & ---------------

ST (xmc)= argmjnD(S( X '}J?TL‘)

Application layer: Prioritization. Scheduling, Packet size
MAC: Retransmission




[Z8 Joint Application-MAC cross-layer optimization

* Expected associated distortion
= - y Cuant R ~ loss
D, . =Psucc)xDz. """ +P\faillD,

* Expected number of transmissions for any packet

—

T=3 tp'(1-p, )+ P(fail)(T,, +1)

=1

Expected additional transmission rate (overhead)

Eﬁ-.f = (:F— | )Lp“g g L_Hl:—mfﬂ.

* Cross-layer optimization problem

. | PE e — \

apt rapt | : N P
Upems- Lo jargmm| D, + AR, |
'Ly o L __I_r_'.-:]_ i




[58 Joint Application-MAC cross-layer optimization

Retransmission limits for different priority packets 1 = [Tl | Ti]
Average number of link retransmissions s= [3! (Lysl) Sl yps ) |

Departure rates from queues to the link (APP layer R-D scheduling)

A= [_"j'k] _"1'L N J
System-wide average packet retransmissions
A-s(T. P - r
E{TJD:F: :- 1 | 1—[[ l : l]
] As(T,P)-C

Overflow rate of the multiqueue system p (T.P)=

AS(T.P)

Link erasure rate  p (T.P)=P""




IEl Joint Application-MAC cross-layer optimization

Retransmission limits for different priority packets 1T = [Tl . Ti]
Average number of link retransmissions s= [31 (Zy,2) Sy P ) |

Departure rates from queues to the link (APP layer R-D scheduling)
A=[A, Ay]
System-wide average packet retransmissions
A-s(T.P) 1:[[ 1 l]’T
Al
Overflow rate of the multiqueue system p.(T,P)=

SIE FP)=

AS(T. PY—C
A5(T.P)

Link erasure rate  p (T.P)=P""

MAC shadow retry limit -> retransmission limit vector Tsrl
Actual retransmission limit vector Tre (with unequal elements)

lterative algorithm [Li and vanderSchaar ‘03] for computing Tre




[Il Subjective video quality experiment

* We evaluate the impact of these strategies on the perceived

video quality by performing a visual experiment according to
CCIR Recommendation 500-4

* selected five scales are:

very annoying (1),

annoying (2),

slightly annoying (3),
perceptible but not annoying (4),
imperceptible (5).

Deploved strategies Visual
Score
No optmuzation at MAC & App 14
MAC laver optunization (RTRO) 1.9
Application laver optmmzation 3.8
Jomt Apphcation-MAC cross- | 4.6

layver optumzation




Cross-layer solutions — new solution needed




Cross-layer solutions — new solution needed

* Integrated optimization approach — very complex -> unsuitable for
real-time multimedia

* Current solutions: ad-hoc heuristics

* Qur new approach [Wong, vanderSchaar, Turaga '05]

* Determine OFFLINE optimal cross-layer solution for classes of content,
channel conditions, protocol implementation

* Use ON-LINE classification techniques to choose the optimized solution
* Video and Channel features -> Strategy choices

* This de-facto solution can be used as is or further improved (i.e. serve
only as initialization) -> Learn on the fly new, improved solutions

* Another advantage: user subjective metrics (not PSNR) can be used




IEH Cross-layer results using classification
P( fail)=0.1
o e Optimal
-~ _~ * Classif. based

6.5 o
L
i

355 e ~ ~— Ad-hoc APP-MAC

— 345 =
s " g s | «— Ad-hoc APP
E 3.5 > f--f".-f :
- 25 2 .--" A
- 315 s * < Ad-hoc MAC

0.5 -

20.5 _ :

28.5

250 212 il =z 024
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FEH Future research

* Wireless and Internet multimedia communication with
Resource and Information Exchanges

* Multimedia compression and communication over OSAR
* Content-Aware Multi-camera systems

* Formal Methods for Designing and Optimizing Multimedia
algorithms on resource-constrained (embedded) systems




=) Collaborative framework for wireless multimedia

Goal: Construct a system, where users can borrow or lend resources from the

system/other users, according to their specific utility and resource awareness.

Dynamic Collaboration/Resource Exchange Among Stations

- Maximize the individual WSTA performance and
- Maximize the system-wide spectrum utilization

o R-D-C Cross-layer
Wireless Scalable Optimized

STA Video Transmission

Coding Strategies




Il New proactive framework for wireless muiltimedia

* Fairness based on contention resolution protocols
[vanderschaar, Shankar 03]

* Workload- Generalized Processor Scheduler [Gallager]

”:{r by} P Number of

.y

>=— Jg=L2,..n NSTAs

GPS advantages (guaranteed throughput, independent service)
cannot be preserved If WSTAs use different cross-layer
optimization strategies

* Air-Time Fairness
* For multimedia: Delay or Distortion Fairness




Distortion Fair Scheduling
D.(t,.1 ) B 1)

Z )

How to Provide Distortion Fair transmission time?

+ Rate-Distortion models needed

» Use equal distortion, or different quality “levels”

FSHR ¥ g}

0 600 Y00 S00 %00 o0 1100 1200 1300 1400 1500 1600
batrate (Kbpas)
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PSNR
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56 | JO conventuonal information theory resulits 1or wireiess

communications hold for multimedia?
[Scaglione, vanderSchaar 03]

Opportunistic MAC or Longest Queue Highest Rate?

A

Opportunistic
MAC

Minimum
video
distortion

D4(r1

y+Da(ro)=const.

-
o
-




New proactive framework for wireless multimedia

* Fair resource management, but passive resource allocation




New proactive framework for wireless muitimedia

* Fair resource management, but passive resource allocation

* Proactive resource management based on coopetition among
WSTAs [NSF Career] -

borrows ideas from on-line algorithms, game theory

* Wireless multimedia - game played between the competing WSTAs with
no, partial or full information and different utility-cost functions

* Significant improvements in guality and system resource utilization
possible [Larcher, vanderschaar 04][sood, vanderschaar 03]




g Formal Methods Tor Designing and Optimizing Mulumedia
Systems

Limitation of existing approaches

Systems are designed based on worst-case scenarios for
multimedia

System layer currently does not cooperate with the multimedia
applications to achieve optimal R-D-C tradeoffs

Currently only ad-hoc solutions for R-D-C optimization
Coarse levels of multimedia complexity (profiles)




constrained devices
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o Segquence Hame Energy Savings

T %
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E"EI Conclusions

* Multi-disciinary research needed
* Need for formal methods and theory
* Optmization theory, micro-economics concepts are helpful

* Muiltimedia — unprecedenied challenges and new research
opportunities for

* Compression and representation

* Realtime wireless transmission

= System design (considenng hardware/software impiementation
1Issues 15 cnixcal)

A new chance to significant improve and reinvent
multimedia compression & processing & communication
& system desian in a cross-/ayer framework!
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Conclusions

* Multimedia — unprecedented challenges and new research
opportunities for

* Compression and representation
* Realtime wireless transmission

* System design (considering hardware/software implementation
Issues is critical)

* Multi-discilinary research needed
* Need for formal methods and theory
* Optimization theary, micro-economics concepts are helpful

A new chance to significant improve and reinvent
multimedia compression & processing & communication
& system design in a cross-layer framework!
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