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Quantum Computers and Cellular
Phones

This talk explores the connection between quantum error
correction and wireless svstems that employ multiple
antennas at the base station and the mobile terminal. The
two topics have a common mathematical foundation.
mvolving orthogonal geometrv - the combinatorics of
binarv quadratic forms. We explain these connections. and
describe how the wireless industryv 1s making use of a
mathematical framework developed by Radon and Hurwitz
about a hundred vears ago.




Wireless Channels

Maobile Maion
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Space-Time Fading
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Space-Time Fading

—_—
o
el
St
=
—
=
=
=
=]
==
-
e
—_—

Angle Spread ® ,= 5°. Doppler Spread 7, = 200 Hz




What is Space-Time Coding?
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Correlate symbols across time and space. Use the
svmbols when the channel 1s good to recover the
svmbols when the channel 1s bad.




Fundamental Limits: Qutage Capacity

Achievable Data Rates with Multiple Antennas
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“It is dangerous to put limits on wireless”
Guglielmo Marconi (1932)




STC: The Model ...

e Transmitted Code Vector:
e, =[ (). () == , e (D)

e Channel Matrix: ,transmit

r
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* Recerved Signal Vector:

r(/)=H-c,+n(/)
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STC: The Model ...

« Transmitted Code Vector:
e; =] (1), e, (1), <~ "5'};[11]']?

e Channel Matrix: , transmit

r
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» Recerved Signal Vector:

r(/)=H-c,+n(/)



STC: Probability of Error Analysis ....

* The matrix B 1s the error matrix between the transmitted
code vector sequence C and the decoded code vector
sequence C .

—

c{l) —¢/(D)
c(l)—c, (1) ,(2)-¢c,(2) - e, (L)—c,(L)

c (1) —cy(l) ex(2)—cp(2) - ep(L)—cy(L)




STC: Probability of Error Analysis

* Transmitted code vector sequence: C = {¢,.c-. ... . ¢/ .

* Probability of error: assuming pertect knowledge of CSL

Pr (C—> C[H) < exp(-d’(C.C)]

= [::‘_T{ [)—cy(l ]]l

M
= Z h A(C. ['}h_; . where

J=l

T : T
h_f—[ Gjy Ajy = .-.’,-:’J_,H-]

A(C.O)=B(C.OB'(C.()




STC: Probability of Error Analysis ....

* Probability of error:

M

Pr (C > C) i(l—[ : = )

s LK,

Ed
L

1

* Let r be the rank of the matrix A and A .A-.... .2 be the
nonzero eigenvalues of A. Then

-M M

prc—¢) < (I %,)

e Thus a diversity gain of 7Af and a coding gain of
(AyAs... A VT are achieved.




STC: Design Criteria

# Rank Cniterion: In order to achieve the maximum diversity N1/
the matrix B(C,.C,) has to be full rank for anv two code vector
sequences C, and C,. If B(C,.C,) has a mmimum rank r over the
set of two tuples of distinct code vector sequences. then a diversity
rA 1s achieved.

Determinant Criterion: The minimum of the r-th roots of the sum
of determinants of all < principal cotfactors of A(C,.C,) taken
over all pairs of distinct code vector sequences C, and C,
corresponds to coding gain. r bemg the rank of A(C,.C,) . The
target of code design 1s making this sum as large as possible. If a
code 1s designed to give a diversity gamn of N1/, for a better coding
gamn, the minimum of the determinant of A(C.C,) taken over all
pairs of distinct code vector sequences €| and C, must be
maximized.




Space-Time Block Codes

ST Block Code
|formation , - e
Source = € —¢C
Ir._ ";] —> -

=

Assumption: channel 1s quasi-static.



Decoding of STBC

« Recerved Signal:
n = hc, +hec, +n

i

i— —hltx —I—l’mf + 11,

* H 1s orthogonal:

H*r=(||h |+ h|F)ec +H*n




Space-Time Block Codes

Signal 2

22 [

- ST Block Code
Iformation | - =
C: —CA
Source [e, e, ]| 7
e Cy

= = * =

Assumption: channel 1s quasi-static.



Decoding of STBC

« Recerved Signal:
r = hc, +hec, +n

o —f:lc‘;' —l—f?,,c‘; + 71

e H 1s orthogonal:

H*r=(||h|F+|h|F)ec +H*n




Real Orthogonal Designs

Definition: Let #.74....1_, be positive integers, and let Yo- Xp----- X
be commuting indeterminates. A real orthogonal design of size V
and type (u,.1,.....u._,) 15 an N x N matrix_\” with entries 0. TX;.

X, , satistving

=1
XXT =| ¥ ux? |I,

Ir:ﬁ

N =2, R=1: This 1s the representation of the complex numbers « as
a 22 matrix algebra over the real numbers R. where the complex
number Xy +1X) corresponds to the matrix

Definition: Rate R =5\



Space-Time Block Codes and Hamilton’s
Biquaternions

N=4, R=1 This is the representation of the quaternions as a 4 -4 matnx algebra
over R , where the quatermon x, + ix, + Jx, + Ax, corresponds to the matrix

Hamilton’s Biquaternions: (Juaternions as pairs of complex numbers
(a.bNa.b)=(aa'—bb.ab +ab)

a b
(a.b)e| - _ matrix multiplication = rule for multiplying

4
o a4 biquatermions




Complex Orthogonal Designs

Definition: A complex orthogonal design of size \ and tvpe
(... 0_,.V....V,) 1samainx Z =X +iY, where X.Y are real
orthogonal designs of tvpe (u#;....2t_,) and (V,.....V,)

respectivelv. and where

5-1 ' ;
i — {( Jux J +[ vy, ] ]f
j=0 7=l

72" =€X ik XT =ir 5
— XN L ¥Y Ve EXT —XFF)

Hence XY’ =YX’

Definition: Rate R=(s + 1) 2N



Octonions or Cayley Numbers

View octonions as 4-tuples of complex numbers. Rule for
multiplication:

Cy = ayby — 00, —bya, —ayb,

b, —a,b, +b,a,

. — f 1 -
G =04, +:.irl 3 2

¢, =b,a,—ab,+a,b, +ha,

¢, =b,a,+ab, —ba, +a,b,

Right multiplication of an octonion a bv octonions of the form

b=(b,.h.h,.0):
h b 0

1

5 0O b Rate 3/'4 complex
orthogonal design

5




Hurwitz-Radon Families of Matrices

real orthogonal design of size N and tvpe

(g -l )

{—LH =ul,

A4 =—A4" iz

(change of basis)




The Computer as Physics Experiment

1946 — ENIAC
2001 — NMR Quantum Computer at Los Alamos

NY Tmmes (March 27) Emanuel Knill and Ravmond
Laflamme at Los Alamos




The Computer as Physics Experiment

1946 — ENIAC
2001 — NMR Quantum Cnmputer at Los Alamos

: - .',I*
' r" i ..’.'.;
: 4 5 : L& )

mmf s £ 562

[ AGNETIC \-f
[ FEELD ud
| N USE

Yo, v, V=2 and Y)e,[=]
= vl




Quantum Systems

We consider a svstem with \" 2-state memory cells
Classical Phvsics: this 1s completelv described bv \V bits
Quantum Physics: this 1s described by 2% —] complex numbers

A guantum bit or gubit 1s an individual 2-state memory cell —
mathematicallv this 1s a 2-dim. Hilbert space

al|O+ |, |al +| B'=1

N qubaits are described mathematicallv as the tensor product of the
individual 2-dim. Hilbert spaces

SNa |v. V=ZY and Y e ‘=1

el
W=

V=




Superposition, Measurement and the
Heisenberg Uncertainty Principle

Superposition: Classical bits take the value 0 or the value 1
Qubits can occupyv a superposition of the states 0 and 1

Measurement: Measure the qubit &|0)+ £|1) wrt. basis | 0)-| 1)

0) with probability | & |

)  with probability | £

No Cloning: Observations of a quantum svstem. no matter how
delicatelv pertormed cannot vield complete information on svstem state
before measurement

Quantum Error Correction: Makes 1t possible to assemble reliable
computers out of unreliable components

* Cannot be achieved by duplicating quantum bits




The Error Process

= () :
Xie, )applies the Pauli matrix &_= : to the rth qubit and fixes the remaining
()

qubats

« this 1s a bit error in the ith qubit

(]
: | to the rth qubit and fixes the remaining

Z(e,) applies the Pauli matrix o, =; £
qubits |

» this 1s a phase error in the ith qubit

Nla) Z(b) produces bit errors in the qubits Lor which ¢ =1 and phase errors n the
qubits for which b, =1

Principle: Any code which corrects these types of quantum errors will be able to
correct errors n arbifrary models. assuming the errors are not correlated among large
numbers of qubits and that the error rate 1s small
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Quadratic and Bilinear Forms over Z

Group E of tensor products T, K. w = where each o, 18

0 1 ( | S 1
[.o_= . O, = or 0_0,
“ i 0 A | 3

&

Commutative subgroups are important — look at \' = 3. and specifv
16 commuting matrices of size 2" =32

d b

c.®0,0,00, 00, QI & 01100 11010 XY(a)Z(b)

X(a)Z(b) commutes with X' (a")Z(bd")ifand onlvifa-b"+a'-b=0
[ 'l'
P 90 0 1 1

I I 0 0|1 O 0 1 O
| S 0O 1 0 0 1
P & 1 O 0




Quantum Error Correction

How it works: the trick 1s to take quantum superposition + decoherence
and to measure the decoherence 1n a wav that gives no information about
the original superposition. and then to correct the measured decoherence

OR*)

S 1s a group of 2x2° commuting svmmetric matrices (/)

The group S has 2° distinct linear characters each

N

afforded bva 27" dim. eigenspace of X . Choose one
of these eigenspaces — wlog. the eigenspace R

corresponding to the trivial character

Then R 1s a quantum error-correcting code that encodes
N—k qubits into NV qubits. The quantum error-correcting
properties of R are determined bv combinatorial
properties of S



Example

Example. A quantum error-correcting code R mapping 1 qubit into 3
qubits

This code contains 2 codewords:
e =| 00000
| + 11000+ 01100+ [ 001 10+ 00011+ 10001
— 10100 = 01010 =|00101—=|10010'—| 01001
— 11110 —|01111— 10111 —[1101L—[11101, .

¢,y =|11111
+| 00111+ 10011+ (11001 +|11100+ 01110
—101011—|10101—|11010—|01101—|10110
— [ 00001 — | 10000 — | 01000 — | 00100 — | 00010
R 1s fixed by cvelic permutations and by _1(11000)Z(00101)

R 1s the eigenspace fixed by the 4-dim. subspace S




Quantum Error Correction

How it works: the trick 1s to take quantum superposition + decoherence
and to measure the decoherence in a wav that gives no mmformation about
the original superposition. and then to correct the measured decoherence

OR*)

S 1s a group of 2x 2" commuting svmmetric mafrices (])

The group S has 2° distinct linear characters each

~

- _-"'.5'—;.' - ] - 7 -‘
afforded by a 2 dim. eigenspace of X . Choose one
of these eigenspaces — wlog. the eigenspace R
corresponding to the trivial character

Then K 1s a quantum error-correcting code that encodes
N—k qubits into N qubits. The quantum error-correcting
properties of R are determined bv combinatorial
properties of S
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Quadratic and Bilinear Forms over Z

Group E of tensor products *m, X. . Dw S where each ) 18

0 1 ['1 0
P — S — or o.0.
B 0 -1 ra

Commutative subgroups are important — look at \' = 3. and specify

16 commuting matrices of size 2" =32
a b

6.00.6.00,®c. @I «>01100|11010 X(a)Z(5)

X(a)Z(b) commutes with X' (a")Z(d")ifand onlv ifa-b"+a'-b=0
a b
1 98¢0 0 1 &1
P 1 & 6|1 & O k €
P 1] g 1 0 O 1
LI & X @9




Quantum Error Correction

How it works: the trick 1s to take quantum superposition + decoherence
and to measure the decoherence in a wav that gives no information about
the original superposition. and then to correct the measured decoherence

O(R*)

S 1s a group of 2x2" commuting svmmetric matrices (/)

The group S has 2° distinct linear characters each

&

- _-"'.:-—;.' . . - - Lo
afforded by a 2 dim. eigenspace of X . Choose one
of these eigenspaces — wlog. the eigenspace R
corresponding to the trivial character

Then R 1s a quantum error-correcting code that encodes
N—k qubits into NV qubits. The quantum error-correcting
properties of R are determined bv combinatorial
properties of S



Example

Example. A quantum error-correcting code R mapping 1 qubit into 3
qubits

This code contains 2 codewords:

i Co/ =
+ {11000+ 01100+ 00110+ 0001 1+ | 10001
— 10100 —=|01010=100101'—=10010—| 01001

—|11110—|01111— 10111 — 11011 —|11101" .
and

-y =|11111

+| 00111+ (10011 +|11001+|11100+ 01110

- 01011—|10101—|11010—|01101—|10110

— | 00001 — | 10000 — | 01000 — | 00100 — | 00010
R 1s fixed by cvelic permutations and by _1(11000)Z(00101)

R 1s the eigenspace fixed by the 4-dim. subspace S




Fundamental Upper Bound on the Rate of
Real Orthogonal Designs

Theorem (Radon, 1922): Given N =2""N,. where V, is odd. define

p(N)=8a+2°. Then

(1) The size s of a Hurwitz-Radon famuly 1s at most p(N) -1

(2) There exasts a famuly with exactly s = p( V) —1 nteger matrices

(10[10) (010/010)  skew-svmmetric matrices that
(11]01) (011/001)  square to —/ and that pairwise
(O1[11) (001/111)  anticommute
=4 (101]011)

(110/101)

(111/100))

(100 |110)

N=38




Complex Designs and Hurwitz-Radon
Families of Type (s,7)

a =(uu )" A4

p,=(u,v, )" 'B—l,r

B =p
; B =1,
ao, =—a,a BB =—Bp

ey

These relations define a Clifford Algebra € of type (s.7)



Fundamental Upper Bound on the Rate of
Complex Orthogonal Designs

Given f symmetric, anti-commuting orthogonal matrices of size V. let
£,(N)—1 be the number of skew-symmetric. anti-commuting
orthogonal matrices of size V' that anti-commute with the given /
matrices:
p.(N)=max{s|C

=1t

has an urreducible matnx representation over
= of degree \'}

Theorem (Wolfe): There exists an amicable pair X.Y of real
orthogonal designs of size V. where .\ has tvpe (1.....1) on vanables
X,-X-....X,. and I has tvpe (1.....1) on variables };-----}; 1f and

only if s=<p,(V)-1

Theorem (Wolfe): L;:tff.}' be an amicable pair of real orthogonal
designs of size N =2" N, where V, is odd. Then the total number of
variables in .\ and I 1s at most 2/2 +2. and this bound 1s achieved by
designs 1.1 that each mvolve /1 +1 vanables




4x4 Complex Designs

Number of Variables in I Number of Variables in .\
o.(4)
0

The rate 3 4 complex design derived from the Cavlev Numbers 1s
optimal

There 1s a rate 1 real design of size 8. but no rate 1 complex design of
size 4




