Sound and Music Worksheet

Match both the science/engineering terms on the left and the music terms on the right with the definitions in the middle. You will use some of the definitions twice.

J	Low Frequency	A. Waves in the air caused by vibrations	J	Low note
С	Longitudinal Waves	B. Waves that move in one direction, but "wave" in another direction	E	Pitch
E	Frequency	C. Waves that move and "wave" in the same direction	F	Dynamic level
G	High Amplitude	D. The distance between one wave and the next wave	н	Soft note
L	White Noise	E. How often a single wave goes by F. How big the difference is between	M	Music
F	Amplitude	the high points and the low points of the waves	I	High note
A	Sound Waves	G. Big difference between highs and lows H. Small difference between highs and lows	A	Sounds
K	Standing Waves	I. Lots of short waves J. Very few long waves	G	Loud note
B	Transverse Waves	K. Waves that can keep vibrating in or on something for a long time		
D	Wavelength	because they "fit" L. A sound that is a mixture of all wavelength	s	
I	High Frequency	M. Sounds that are organized by people		
н	Low Amplitude			

Give short answers:

- Can sound travel through empty space? Why or why not?
 No; there can be no sound vibrations where there is nothing to vibrate.
- 2. How are sound waves like water waves? How are they not like water waves? Both can have frequency and amplitude, but water waves are transverse and sound waves are longitudinal.
- 3. Name 2 ways a player of a musical instrument can change the sound of the instrument. **They can make the pitch higher or lower or make the sound louder or softer.**
- 4. How can an instrument with only 4 strings get more than 4 different pitches?
 You can make the vibrating part of the string shorter, and the pitch higher, by holding the string down with one finger.
- 5. When a trumpet player pushes down a valve, she opens an extra loop of tubing. What does this do to the trumpet? To the sound?

This in effect makes the trumpet longer, so the sound is lower.