<< Chapter < Page Chapter >> Page >
A picture of different-sized CdSe quantum dots synthesized in a heat transfer liquid (M.S. Wong, Rice University).

Band gap measurements of qds

As previously mentioned, QDs are small enough that quantum effects influence their properties. At sizes under approximately 10 nm, quantum confinement effects dominate the optoelectronic properties of a material. Quantum confinement results from electrons and electron holes being squeezed into a dimension that approaches a critical quantum measurement, called the exciton Bohr radius. As explained above, the distance between the electron and the hole within an exciton is called the exciton Bohr radius. In bulk semiconductors the exciton can move freely in all directions, but when the size of a semiconductor is reduced to only a few nanometers, quantum confinement effects occur and the band gap properties are changed. Confinement of the exciton in one dimension produces a quantum well, confinement in two dimensions produces a quantum wire, and confinement in all three dimensions produces a quantum dot.

Recombination occurs when an electron from a higher energy level relaxes to a lower energy level and recombines with an electron hole. This process is accompanied by the emission of radiation, which can be measured to give the band gap size of a semiconductor. The energy of the emitted photon in a recombination process of a QD can be modeled as the sum of the band gap energy, the confinement energies of the excited electron and the electron hole, and the bound energy of the exciton as show in [link] .

The confinement energy can be modeled as a simple particle in a one-dimensional box problem and the energy levels of the exciton can be represented as the solutions to the equation at the ground level (n = 1) with the mass replaced by the reduced mass. The confinement energy is given by [link] , where ħ is the reduced Plank’s constant, µ is the reduced mass, and a is the particle radius. m e and m h are the effective masses of the electron and the hole, respectively.

The bound exciton energy can be modeled by using the Coulomb interaction between the electron and the positively charged electron-hole, as shown in [link] .The negative energy is proportional to Rydberg’s energy ( R y ) (13.6 eV) and inversely proportional to the square of the size-dependent dielectric constant, ε r . µ and m e are the reduced mass and the effective mass of the electron, respectively.

Using these models and spectroscopic measurements of the emitted photon energy (E), it is possible to measure the band gap of QDs.

Photoluminescence spectroscopy

Photoluminescence (PL) Spectroscopy is perhaps the best way to measure the band gap of QDs. PL spectroscopy is a contactless, nondestructive method that is extremely useful in measuring the separation between different energy levels. PL spectroscopy works by directing light onto a sample, where energy is absorbed by electrons in the sample and elevated to a higher energy-state through a process known as photo-excitation. Photo-excitation produces the electron-electron hole pair. The recombination of the electron-electron hole pair then occurs with the emission of radiation (light). The energy of the emitted light (photoluminescence) relates to the difference in energy levels between the lower (ground) electronic state and the higher (excited) electronic state. This amount of energy is measured by PL spectroscopy to give the band gap size.

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe

Get the best Nanomaterials and nano... course in your pocket!





Source:  OpenStax, Nanomaterials and nanotechnology. OpenStax CNX. May 07, 2014 Download for free at http://legacy.cnx.org/content/col10700/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Nanomaterials and nanotechnology' conversation and receive update notifications?

Ask