<< Chapter < Page Chapter >> Page >

Learning objectives

  • Define the generation time for growth based on binary fission
  • Identify and describe the activities of microorganisms undergoing typical phases of binary fission (simple cell division) in a growth curve
  • Explain several laboratory methods used to determine viable and total cell counts in populations undergoing exponential growth
  • Describe examples of cell division not involving binary fission, such as budding or fragmentation
  • Describe the formation and characteristics of biofilms
  • Identify health risks associated with biofilms and how they are addressed
  • Describe quorum sensing and its role in cell-to-cell communication and coordination of cellular activities

Part 1

Jeni, a 24-year-old pregnant woman in her second trimester, visits a clinic with complaints of high fever, 38.9 °C (102 °F), fatigue, and muscle aches—typical flu-like signs and symptoms. Jeni exercises regularly and follows a nutritious diet with emphasis on organic foods, including raw milk that she purchases from a local farmer’s market. All of her immunizations are up to date. However, the health-care provider who sees Jeni is concerned and orders a blood sample to be sent for testing by the microbiology laboratory.

  • Why is the health-care provider concerned about Jeni’s signs and symptoms?

Jump to the next Clinical Focus box

The bacterial cell cycle involves the formation of new cells through the replication of DNA and partitioning of cellular components into two daughter cells. In prokaryotes, reproduction is always asexual, although extensive genetic recombination in the form of horizontal gene transfer takes place, as will be explored in a different chapter. Most bacteria have a single circular chromosome; however, some exceptions exist. For example, Borrelia burgdorferi , the causative agent of Lyme disease, has a linear chromosome.

Binary fission

The most common mechanism of cell replication in bacteria is a process called binary fission , which is depicted in [link] . Before dividing, the cell grows and increases its number of cellular components. Next, the replication of DNA starts at a location on the circular chromosome called the origin of replication, where the chromosome is attached to the inner cell membrane. Replication continues in opposite directions along the chromosome until the terminus is reached.

The center of the enlarged cell constricts until two daughter cells are formed, each offspring receiving a complete copy of the parental genome and a division of the cytoplasm (cytokinesis). This process of cytokinesis and cell division is directed by a protein called FtsZ . FtsZ assembles into a Z ring on the cytoplasmic membrane ( [link] ). The Z ring is anchored by FtsZ-binding proteins and defines the division plane between the two daughter cells. Additional proteins required for cell division are added to the Z ring to form a structure called the divisome . The divisome activates to produce a peptidoglycan cell wall and build a septum that divides the two daughter cells. The daughter cells are separated by the division septum, where all of the cells’ outer layers (the cell wall and outer membranes, if present) must be remodeled to complete division. For example, we know that specific enzymes break bonds between the monomers in peptidoglycans and allow addition of new subunits along the division septum.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask