<< Chapter < Page Chapter >> Page >

Bone marrow

This photograph shows the bone marrow.
Red bone marrow fills the head of the femur, and a spot of yellow bone marrow is visible in the center. The white reference bar is 1 cm.

Thymus

The thymus    gland is a bilobed organ found in the space between the sternum and the aorta of the heart ( [link] ). Connective tissue holds the lobes closely together but also separates them and forms a capsule.

Location, structure, and histology of the thymus

The left panel of this figure shows the head and chest of a woman and the location of the thymus is marked. The top right panel shows a micrograph of the thymus and the bottom right panel shows a magnified view of the structure of the thymus.
The thymus lies above the heart. The trabeculae and lobules, including the darkly staining cortex and the lighter staining medulla of each lobule, are clearly visible in the light micrograph of the thymus of a newborn. LM × 100. (Micrograph provided by the Regents of the University of Michigan Medical School © 2012)

View the University of Michigan WebScope at (External Link) to explore the tissue sample in greater detail.

The connective tissue capsule further divides the thymus into lobules via extensions called trabeculae. The outer region of the organ is known as the cortex and contains large numbers of thymocytes with some epithelial cells, macrophages, and dendritic cells (two types of phagocytic cells that are derived from monocytes). The cortex is densely packed so it stains more intensely than the rest of the thymus (see [link] ). The medulla, where thymocytes migrate before leaving the thymus, contains a less dense collection of thymocytes, epithelial cells, and dendritic cells.

Aging and the…

Immune system

By the year 2050, 25 percent of the population of the United States will be 60 years of age or older. The CDC estimates that 80 percent of those 60 years and older have one or more chronic disease associated with deficiencies of the immune systems. This loss of immune function with age is called immunosenescence. To treat this growing population, medical professionals must better understand the aging process. One major cause of age-related immune deficiencies is thymic involution, the shrinking of the thymus gland that begins at birth, at a rate of about three percent tissue loss per year, and continues until 35–45 years of age, when the rate declines to about one percent loss per year for the rest of one’s life. At that pace, the total loss of thymic epithelial tissue and thymocytes would occur at about 120 years of age. Thus, this age is a theoretical limit to a healthy human lifespan.

Thymic involution has been observed in all vertebrate species that have a thymus gland. Animal studies have shown that transplanted thymic grafts between inbred strains of mice involuted according to the age of the donor and not of the recipient, implying the process is genetically programmed. There is evidence that the thymic microenvironment, so vital to the development of naïve T cells, loses thymic epithelial cells according to the decreasing expression of the FOXN1 gene with age.

It is also known that thymic involution can be altered by hormone levels. Sex hormones such as estrogen and testosterone enhance involution, and the hormonal changes in pregnant women cause a temporary thymic involution that reverses itself, when the size of the thymus and its hormone levels return to normal, usually after lactation ceases. What does all this tell us? Can we reverse immunosenescence, or at least slow it down? The potential is there for using thymic transplants from younger donors to keep thymic output of naïve T cells high. Gene therapies that target gene expression are also seen as future possibilities. The more we learn through immunosenescence research, the more opportunities there will be to develop therapies, even though these therapies will likely take decades to develop. The ultimate goal is for everyone to live and be healthy longer, but there may be limits to immortality imposed by our genes and hormones.

Questions & Answers

Capillary permeability
what do you want to know about it?
Ramsin
Hello, I want to search about the topic, information and pictures
syncitium is the property of which of the following muscle
Shahab Reply
can I get the questions of human physiology that is present in HSC 2nd semester
Sai Reply
i now madam
irpa
ha can u please send me the PDF of questions
Sai
it's important to me to have that information please send as fast as u can
Sai
me too if possible?
Ramsin
If a molecule can only pass through a membrane with the assistance of a membrane protein, but the direction of its travel is controlled only by its concentration, the process is called?
osmosis
chozen
A 52 year old woman turned her head quickly, during a tennis game and suddenly felt a sharp pain in her neck along her upper limb. Physical examination and medical imaging revealed a herniated degenerated IV disc in the cervical region of her vertebral column.
Isaac
a. What probably caused the IV disc herniation? b. What cause IV disc degeneration? c. What are the result of disc degeneration?
Isaac
b
Mirasol
Describe the neural control of erection and ejaculation.
Nana Reply
A 52 year old woman turned her head quickly, during a tennis game and suddenly felt a sharp pain in her neck along her upper limb. Physical examination and medical imaging revealed a herniated degenerated IV disc in the cervical region of her vertebral column. a)What probably caused the IV di
Isaac
a) What probably caused the IV disc herniation? b) What cause IV disc degeneration? c) What are the result of disc degeneration?
Isaac
iv disc herniation compress the nerve cause numbness tingling sensation even paralysis in severe cases...
Khawaja
explain more
DANIELLA Reply
yes
Ramzan
function of skeleton
Josiah Reply
- for movement - blood production by the bone marrow
Daniel
production of calsium and phosphorus
Juma
Shortly after childbirth, a woman consulted her physician about a tender swelling in her perineal region. 8. What fossa related the perineal swelling? 9. Describe what vessel may cause the collection of blood in the fossa after childbirth?
Isaac
what is heart
Subhajit Reply
it is the tissue..which pump blood to the all parts of body
GRAY
the heart is a conical , hollow, muscular organ which works continuously through out the life of a person ,it is about the size of a clenched fist and weighs about 300 grams and also the heart is in the chest just behind the breast bone and between the two lungs
Mary
a hollow muscular organ that pumps blood through the circulatory system by regular contractions
Johnny
is a muscular organ that pumps blood lungs and other body tissues through vessels
Nolosha
Shortly after childbirth, a woman consulted her physician about a tender swelling in her perineal region. 8. What fossa related the perineal swelling? 9. Describe what vessel may cause the collection of blood in the fossa after childbirth?
Isaac
Shortly after childbirth, a woman consulted her physician about a tender swelling in her perineal region. 8. What fossa related the perineal swelling? 9. Describe what vessel may cause the collection of blood in the fossa after childbirth?
Isaac Reply
inguinal fossa femoral vein?
Jeen
if you dont the answer by now you should seek another line of work. as a professor it is my duty to let you know about your lacking.
Arif
branches of brachial plexus
Arooj Reply
musculocutaneous, median, ulnar, axillary, and radial nerves.
Shakerah
Shortly after childbirth, a woman consulted her physician about a tender swelling in her perineal region. a.What fossa related the perineal swelling? b.Describe what vessel may cause the collection of blood in the fossa after childbirth?
Isaac
What is great Auricular nerve?
ZUBAIR Reply
it originates from the cervical plexus that provides sensory innervation to the skin.
Daniel
why it is called Auricular nerve
Amber
is any payment is needed to use this app
Suprith Reply
is it a question?
Samenjo
doubt about this app
Suprith
which lines divide the body into nine quadrant
Julius Reply
nine regions of abdomen can b marked using two horizontal & two vertical lines...the vertical lines are the mid clavicular lines taken from the mid point of each clavicle. the upper horizontal lines is the subcostal line taken from the inferior parts of the lowest costal cartilage...
Khawaja
to get a better understanding for the function
Rashana Reply
anatomy and physiology work closely together
Rashana
anatomy to you about the structure of the while physiology is the the study of the body function
Rashana
what is the difference between negative and positive feedback
Rashana
The key difference bewteen positive and negative feedback is their response to change. Positive feedback amplifies change while negative reduces change.
ladychen
negative feed back produces a response that brings back to normal while positive feed back produces a response that stimulates
Julius
examples of the body structure
Naki Reply
body's structure
Naki

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask