<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Outline the basic premise of crystal field theory (CFT)
  • Identify molecular geometries associated with various d-orbital splitting patterns
  • Predict electron configurations of split d orbitals for selected transition metal atoms or ions
  • Explain spectral and magnetic properties in terms of CFT concepts

The behavior of coordination compounds cannot be adequately explained by the same theories used for main group element chemistry. The observed geometries of coordination complexes are not consistent with hybridized orbitals on the central metal overlapping with ligand orbitals, as would be predicted by valence bond theory. The observed colors indicate that the d orbitals often occur at different energy levels rather than all being degenerate, that is, of equal energy, as are the three p orbitals. To explain the stabilities, structures, colors, and magnetic properties of transition metal complexes, a different bonding model has been developed. Just as valence bond theory explains many aspects of bonding in main group chemistry, crystal field theory is useful in understanding and predicting the behavior of transition metal complexes.

Crystal field theory

To explain the observed behavior of transition metal complexes (such as how colors arise), a model involving electrostatic interactions between the electrons from the ligands and the electrons in the unhybridized d orbitals of the central metal atom has been developed. This electrostatic model is crystal field theory    (CFT). It allows us to understand, interpret, and predict the colors, magnetic behavior, and some structures of coordination compounds of transition metals.

CFT focuses on the nonbonding electrons on the central metal ion in coordination complexes not on the metal-ligand bonds. Like valence bond theory, CFT tells only part of the story of the behavior of complexes. However, it tells the part that valence bond theory does not. In its pure form, CFT ignores any covalent bonding between ligands and metal ions. Both the ligand and the metal are treated as infinitesimally small point charges.

All electrons are negative, so the electrons donated from the ligands will repel the electrons of the central metal. Let us consider the behavior of the electrons in the unhybridized d orbitals in an octahedral complex. The five d orbitals consist of lobe-shaped regions and are arranged in space, as shown in [link] . In an octahedral complex, the six ligands coordinate along the axes.

This figure includes diagrams of five d orbitals. Each diagram includes three axes. The z-axis is vertical and is denoted with an upward pointing arrow. It is labeled “z” in the first diagram. Arrows similarly identify the x-axis with an arrow pointing from the rear left to the right front, diagonally across the figure and the y-axis with an arrow pointing from the left front diagonally across the figure to the right rear of the diagram. These axes are similarly labeled as “x” and “y.” In this first diagram, four orange balloon-like shapes extend from a point at the origin out along the x- and y- axes in positive and negative directions covering just over half the length of the positive and negative x- and y- axes. Beneath the diagram is the label, “d subscript ( x superscript 2 minus y superscript 2 ).” The second diagram just right of the first is similar except the x, y, and z labels have been replaced in each instance with the letter L. Only a pair of the orange balloon-like shapes are present and extend from the origin above and below along the vertical axis. An orange toroidal or donut shape is positioned around the origin, oriented through the x- and y- axes. This shape extends out to about a third of the length of the positive and negative regions of the x- and y- axes. This diagram is labeled, “d subscript ( z superscript 2 ).” The third through fifth diagrams, similar to the first, show four orange balloon-like shapes. These diagrams differ however in the orientation of the shapes along the axes and the x-, y-, and z-axis labels have each been replaced with the letter L. Planes are added to the figures to help show the orientation differences with these diagrams. In the third diagram, a green plane is oriented vertically through the length of the x-axis and a blue plane is oriented horizontally through the length of the y-axis. The balloon shapes extend from the origin to the spaces between the positive z- and negative y- axes, positive z- and positive y- axes, negative z- and negative y- axes, and negative z- and positive y- axes. This diagram is labeled, “d subscript ( y z ).” In the fourth diagram, a green plane is oriented vertically through the x- and y- axes and a blue plane is oriented horizontally through the length of the x-axis. The balloon shapes extend from the origin to the spaces between the positive z- and negative x- axes, positive z- and positive x- axes, negative z- and negative x- axes, and negative z- and positive x- axes. This diagram is labeled “d subscript ( x z ).” In the fifth diagram, a pink plane is oriented vertically through the length of the y-axis and a green plane is oriented vertically through the length of the x-axis. The balloon shapes extend from the origin to the spaces between the positive x- and negative y- axes, positive x- and positive y- axes, negative x- and negative y- axes, and negative x- and positive y- axes. This diagram is labeled, “d subscript ( x y ).”
The directional characteristics of the five d orbitals are shown here. The shaded portions indicate the phase of the orbitals. The ligands (L) coordinate along the axes. For clarity, the ligands have been omitted from the d x 2 y 2 orbital so that the axis labels could be shown.

In an uncomplexed metal ion in the gas phase, the electrons are distributed among the five d orbitals in accord with Hund's rule because the orbitals all have the same energy. However, when ligands coordinate to a metal ion, the energies of the d orbitals are no longer the same.

Questions & Answers

How does an element differ from a compound? How are they similar?
Adeola Reply
an element is an indivisible particles that can take part in a reaction and consist of smaller or tiny particles i.e proton, neutrons and electron while a compound is when two or more element chemically combine together. They are similar when they are homogeneous compound. they take the same rxn.
Yusuf
How to get the Lewis formula of SeCl+3
Erica Reply
hi,I'm new here can I join the conversation
EZEA
what is the structural formula for starch
EZEA Reply
Starch is a mixture (of chemicals) of amylose and amylopectin. Both are macromolecules and polymers. You can search on wikipedia.
Abdelkarim
what is the roles of filter bed
Fathmat
what is the roles of Alu m
Fathmat
what is the roles of chlorine
Fathmat
Roles can be classified or correlate it to different areas: For example: Chlorine can be used in reactions (in industry) to manufacture HCl, which then can be used for other things. Or in swimming pools to kill bacteria. Or as a component in compounds with pharmaceutical roles (drugs). For Al:
Abdelkarim
Its dentisty value is suitable to be used in alloys (mixture of metals) in aircraft bodies. Also, Aluminium foils, Tin cans,.. Some of them are also in Al overhead cables in streets and long roads.
Abdelkarim
what is chemistry
Maxamed
what is the meaning of exceedingly
Yushao Reply
it is an adverb which means extremely
Rohini
what is atomic chemistry?
Gladys Reply
Lewis structure for no3
Gladys
Lewis structure for no3
Gladys
what is weak acid
Muhammed Reply
It is an acid which partially ionises in water.
Abdelkarim
what is incandescence
Clifton
what makes it glow
Clifton
why is it red, irange and yellow in color
Clifton
hello am new here and I want to join you
Aliyu
hello
Clifton
hi
Aliyu
too
Gillian
hello i am new here please i want to join this group
Paul
Hi, I'm also new here
Salaudeen
Hi
Keeya
hello guys !!
Sourav
what is pressure?
Slark Reply
The force applied to suction Area of the body
Ahmed
Matter composed of exceedingly small paticle called atom.
Yushao
questions related to metals
Regina Reply
occurrence and preparation of the representatives metals
Regina
list the 20, periodic table and their symbols
Fathmat Reply
hydrogen:h helium;he lithium:l beryllium:be Boron:b Carbon;C Nitrogen:n Oxygen:O FLUORINE:f Neon:n Sodium:s Magnesium:mg Aluminum:a Silicon:s Phosphorus:p Sulphur:s Chlorine:c Argon;a Potassium:p Calcium:c
Benita
Hydrogen, helium, lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine, neon, sodium, magnesium, aluminium, silicon, phosphorus, sulphur, chlorine, argon, potassium, calcium
Cudjoe
what is a solute
Ekezie Reply
Any substance that is disolved in a liqid solvent to create a solution
Fifa
sorry liquid
Fifa
it's a liquid substance
Fathmat
hello group
Ayomide
is the substance that dissolves in the solvent
Amos
so is HCl ionic compound
Honest Reply
No, covalent compound ➡️ molecule. As both H and Cl are non-metals and and form covalent bind by sharing valence e-. But can fully ionice in water forming H+ (a proton, a reason for acidity) and Cl- (anion =Chloride) Hydrogen Chloride is a gas at room; Hydrochloric acid = HCl (aq), dissolved in w
Abdelkarim
Form covalenr bond*
Abdelkarim
The question marks are an emoji in the first sentence is an unread emoji. HCl Covalent compund -> molecule
Abdelkarim
Hi.
Queen
Hi
Calvin
Yh
Cudjoe
yes
Amos
what is chemistry
Chukwu Reply
is the study of composition of substances and the way they behave under different conditions
Amos
how do calculate n1 though n6 any help on understanding the concept
Clifton
where can I get the test bank or mcqs ? any idea ?
Sourav Reply
what are the types of intermolecular forces between organic compounds
Eke Reply
Intermolecular forces exist between molecules of different units like van der waal force, hydrogen bonds
Salaudeen
What is chemistry
khausar Reply
scientific study of structure of substances and of the way that they react with other substances
Haider
Thanks
khausar
welcome
Haider
Hi
khausar
hi 2
Haider
whr u from
Haider
are u writing GCE
Equin
Cameroon and u
Equin
hello
Daniel

Get the best Chemistry course in your pocket!





Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask