<< Chapter < Page Chapter >> Page >
( 1.0 × 10 −4 ) ( 1.8 × 10 −6 ) = 9.8 × 10 −5 M

The concentration of NaOH is:

9.8 × 10 −5 M NaOH 0.101 L = 9.7 × 10 −4 M

The pOH of this solution is:

pOH = −log [ OH ] = −log ( 9.7 × 10 −4 ) = 3.01

The pH is:

pH = 14.00 pOH = 10.99

The pH changes from 4.74 to 10.99 in this unbuffered solution. This compares to the change of 4.74 to 4.75 that occurred when the same amount of NaOH was added to the buffered solution described in part (b).

Check your learning

Show that adding 1.0 mL of 0.10 M HCl changes the pH of 100 mL of a 1.8 × 10 −5 M HCl solution from 4.74 to 3.00.

Answer:

Initial pH of 1.8 × 10 −5 M HCl; pH = −log[H 3 O + ] = −log[1.8 × 10 −5 ] = 4.74
Moles of H 3 O + in 100 mL 1.8 × 10 −5 M HCl; 1.8 × 10 −5 moles/L × 0.100 L = 1.8 × 10 −6
Moles of H 3 O + added by addition of 1.0 mL of 0.10 M HCl: 0.10 moles/L × 0.0010 L = 1.0 × 10 −4 moles; final pH after addition of 1.0 mL of 0.10 M HCl:

pH = −log [ H 3 O + ] = −log ( total moles H 3 O + total volume ) = −log ( 1.0 × 10 −4 mol + 1.8 × 10 −6 mol 101 mL ( 1 L 1000 mL ) ) = 3.00

If we add an acid or a base to a buffer that is a mixture of a weak base and its salt, the calculations of the changes in pH are analogous to those for a buffer mixture of a weak acid and its salt.

Buffer capacity

Buffer solutions do not have an unlimited capacity to keep the pH relatively constant ( [link] ). If we add so much base to a buffer that the weak acid is exhausted, no more buffering action toward the base is possible. On the other hand, if we add an excess of acid, the weak base would be exhausted, and no more buffering action toward any additional acid would be possible. In fact, we do not even need to exhaust all of the acid or base in a buffer to overwhelm it; its buffering action will diminish rapidly as a given component nears depletion.

No Alt Text
The indicator color (methyl orange) shows that a small amount of acid added to a buffered solution of pH 8 (beaker on the left) has little affect on the buffered system (middle beaker). However, a large amount of acid exhausts the buffering capacity of the solution and the pH changes dramatically (beaker on the right). (credit: modification of work by Mark Ott)

The buffer capacity    is the amount of acid or base that can be added to a given volume of a buffer solution before the pH changes significantly, usually by one unit. Buffer capacity depends on the amounts of the weak acid and its conjugate base that are in a buffer mixture. For example, 1 L of a solution that is 1.0 M in acetic acid and 1.0 M in sodium acetate has a greater buffer capacity than 1 L of a solution that is 0.10 M in acetic acid and 0.10 M in sodium acetate even though both solutions have the same pH. The first solution has more buffer capacity because it contains more acetic acid and acetate ion.

Selection of suitable buffer mixtures

There are two useful rules of thumb for selecting buffer mixtures:

  1. A good buffer mixture should have about equal concentrations of both of its components. A buffer solution has generally lost its usefulness when one component of the buffer pair is less than about 10% of the other. [link] shows an acetic acid-acetate ion buffer as base is added. The initial pH is 4.74. A change of 1 pH unit occurs when the acetic acid concentration is reduced to 11% of the acetate ion concentration.
    A graph is shown with a horizontal axis labeled “Added m L of 0.10 M N a O H” which has markings and vertical gridlines every 10 units from 0 to 110. The vertical axis is labeled “p H” and is marked every 1 unit beginning at 0 extending to 11. A break is shown in the vertical axis between 0 and 4. A red curve is drawn on the graph which increases gradually from the point (0, 4.8) up to about (100, 7) after which the graph has a vertical section up to about (100, 11). The curve is labeled [ C H subscript 3 C O subscript 2 H ] is 11 percent of [ C H subscript 3 CO subscript 2 superscript negative].
    The graph, an illustration of buffering action, shows change of pH as an increasing amount of a 0.10- M NaOH solution is added to 100 mL of a buffer solution in which, initially, [CH 3 CO 2 H] = 0.10 M and [ CH 3 CO 2 ] = 0.10 M .
  2. Weak acids and their salts are better as buffers for pHs less than 7; weak bases and their salts are better as buffers for pHs greater than 7.

Questions & Answers

What is stoichometry
ngwuebo Reply
what is atom
yinka Reply
An indivisible part of an element
ngwuebo
the smallest particle of an element which is indivisible is called an atom
Aloaye
An atom is the smallest indivisible particle of an element that can take part in chemical reaction
Alieu
is carbonates soluble
Ebuka Reply
what is the difference between light and electricity
Joshua Reply
What is atom? atom can be defined as the smallest particles
Adazion
what is the difference between Anode and nodes?
Adazion
What's the net equations for the three steps of dissociation of phosphoric acid?
Lisa Reply
what is chemistry
Prince Reply
the study of matter
Reginald
what did the first law of thermodynamics say
Starr Reply
energy can neither be created or distroyed it can only be transferred or converted from one form to another
Adedeji
Graham's law of Diffusion
Ayo Reply
what is melting vaporization
Anieke Reply
melting and boiling point explain in term of molecular motion and Brownian movement
Anieke
Scientific notation for 150.9433962
Steve Reply
what is aromaticity
Usman Reply
aromaticity is a conjugated pi system specific to organic rings like benzene, which have an odd number of electron pairs within the system that allows for exceptional molecular stability
Pookieman
what is caustic soda
Ogbonna Reply
sodium hydroxide (NaOH)
Kamaluddeen
what is distilled water
Rihanat
is simply means a condensed water vapour
Kamaluddeen
advantage and disadvantage of water to human and industry
Abdulrahman Reply
a hydrocarbon contains 7.7 percent by mass of hydrogen and 92.3 percent by mass of carbon
Timothy Reply
how many types of covalent r there
JArim Reply
how many covalent bond r there
JArim
they are three 3
Adazion
TYPES OF COVALENT BOND-POLAR BOND-NON POLAR BOND-DOUBLE BOND-TRIPPLE BOND. There are three types of covalent bond depending upon the number of shared electron pairs. A covalent bond formed by the mutual sharing of one electron pair between two atoms is called a "Single Covalent bond.
Usman
Practice Key Terms 3

Get the best Chemistry course in your pocket!





Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask