4.1 Linear functions  (Page 12/27)

 Page 12 / 27
$-4\left(\frac{1}{4}\right)=-1$

Parallel and perpendicular lines

Two lines are parallel lines    if they do not intersect. The slopes of the lines are the same.

If and only if $\text{\hspace{0.17em}}{b}_{1}={b}_{2}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{m}_{1}={m}_{2},\text{\hspace{0.17em}}$ we say the lines coincide. Coincident lines are the same line.

Two lines are perpendicular lines    if they intersect to form a right angle.

${m}_{1}{m}_{2}=-1,\text{so}\text{\hspace{0.17em}}{m}_{2}=-\frac{1}{{m}_{1}}$

Identifying parallel and perpendicular lines

Given the functions below, identify the functions whose graphs are a pair of parallel lines and a pair of perpendicular lines.

$\begin{array}{cccccc}\hfill f\left(x\right)& =& 2x+3\hfill & \hfill \phantom{\rule{2em}{0ex}}h\left(x\right)& =& -2x+2\hfill \\ \hfill g\left(x\right)& =& \frac{1}{2}x-4\hfill & \hfill \phantom{\rule{2em}{0ex}}j\left(x\right)& =& 2x-6\hfill \end{array}$

Parallel lines have the same slope. Because the functions $\text{\hspace{0.17em}}f\left(x\right)=2x+3\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}j\left(x\right)=2x-6\text{\hspace{0.17em}}$ each have a slope of 2, they represent parallel lines. Perpendicular lines have negative reciprocal slopes. Because −2 and $\text{\hspace{0.17em}}\frac{1}{2}\text{\hspace{0.17em}}$ are negative reciprocals, the functions $\text{\hspace{0.17em}}g\left(x\right)=\frac{1}{2}x-4\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}h\left(x\right)=-2x+2\text{\hspace{0.17em}}$ represent perpendicular lines.

Writing the equation of a line parallel or perpendicular to a given line

If we know the equation of a line, we can use what we know about slope to write the equation of a line that is either parallel or perpendicular to the given line.

Writing equations of parallel lines

Suppose for example, we are given the equation shown.

$f\left(x\right)=3x+1$

We know that the slope of the line formed by the function is 3. We also know that the y- intercept is $\text{\hspace{0.17em}}\left(0,1\right).\text{\hspace{0.17em}}$ Any other line with a slope of 3 will be parallel to $\text{\hspace{0.17em}}f\left(x\right).\text{\hspace{0.17em}}$ So the lines formed by all of the following functions will be parallel to $\text{\hspace{0.17em}}f\left(x\right).$

$\begin{array}{ccc}\hfill g\left(x\right)& =& 3x+6\hfill \\ \hfill h\left(x\right)& =& 3x+1\hfill \\ \hfill p\left(x\right)& =& 3x+\frac{2}{3}\hfill \end{array}$

Suppose then we want to write the equation of a line that is parallel to $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ and passes through the point $\text{\hspace{0.17em}}\left(1,\text{7}\right).\text{\hspace{0.17em}}$ This type of problem is often described as a point-slope problem because we have a point and a slope. In our example, we know that the slope is 3. We need to determine which value of $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ will give the correct line. We can begin with the point-slope form of an equation for a line, and then rewrite it in the slope-intercept form.

$\begin{array}{ccc}\hfill y-{y}_{1}& =& m\left(x-{x}_{1}\right)\hfill \\ \hfill y-7& =& 3\left(x-1\right)\hfill \\ \hfill y-7& =& 3x-3\hfill \\ \hfill y& =& 3x+4\hfill \end{array}$

So $\text{\hspace{0.17em}}g\left(x\right)=3x+4\text{\hspace{0.17em}}$ is parallel to $\text{\hspace{0.17em}}f\left(x\right)=3x+1\text{\hspace{0.17em}}$ and passes through the point $\text{\hspace{0.17em}}\left(1,\text{7}\right).$

Given the equation of a function and a point through which its graph passes, write the equation of a line parallel to the given line that passes through the given point.

1. Find the slope of the function.
2. Substitute the given values into either the general point-slope equation or the slope-intercept equation for a line.
3. Simplify.

Finding a line parallel to a given line

Find a line parallel to the graph of $\text{\hspace{0.17em}}f\left(x\right)=3x+6\text{\hspace{0.17em}}$ that passes through the point $\text{\hspace{0.17em}}\left(3,\text{0}\right).$

The slope of the given line is 3. If we choose the slope-intercept form, we can substitute $\text{\hspace{0.17em}}m=3,x=3,$ and $\text{\hspace{0.17em}}f\left(x\right)=0\text{\hspace{0.17em}}$ into the slope-intercept form to find the y- intercept.

$\begin{array}{ccc}\hfill g\left(x\right)& =& 3x+b\hfill \\ \hfill 0& =& 3\left(3\right)+b\hfill \\ \hfill b& =& –9\hfill \end{array}$

The line parallel to $\text{\hspace{0.17em}}f\left(x\right)\text{\hspace{0.17em}}$ that passes through $\text{\hspace{0.17em}}\left(3,\text{0}\right)\text{\hspace{0.17em}}$ is $\text{\hspace{0.17em}}g\left(x\right)=3x-9.$

Writing equations of perpendicular lines

We can use a very similar process to write the equation for a line perpendicular to a given line. Instead of using the same slope, however, we use the negative reciprocal of the given slope. Suppose we are given the function shown.

if tan alpha + beta is equal to sin x + Y then prove that X square + Y square - 2 I got hyperbole 2 Beta + 1 is equal to zero
sin^4+sin^2=1, prove that tan^2-tan^4+1=0
what is the formula used for this question? "Jamal wants to save \$54,000 for a down payment on a home. How much will he need to invest in an account with 8.2% APR, compounding daily, in order to reach his goal in 5 years?"
i don't need help solving it I just need a memory jogger please.
Kuz
A = P(1 + r/n) ^rt
Dale
how to solve an expression when equal to zero
its a very simple
Kavita
gave your expression then i solve
Kavita
Hy guys, I have a problem when it comes on solving equations and expressions, can you help me 😭😭
Thuli
Tomorrow its an revision on factorising and Simplifying...
Thuli
ok sent the quiz
kurash
send
Kavita
Hi
Masum
What is the value of log-1
Masum
the value of log1=0
Kavita
Log(-1)
Masum
What is the value of i^i
Masum
log -1 is 1.36
kurash
No
Masum
no I m right
Kavita
No sister.
Masum
no I m right
Kavita
tan20°×tan30°×tan45°×tan50°×tan60°×tan70°
jaldi batao
Joju
Find the value of x between 0degree and 360 degree which satisfy the equation 3sinx =tanx
what is sine?
what is the standard form of 1
1×10^0
Akugry
Evalute exponential functions
30
Shani
The sides of a triangle are three consecutive natural number numbers and it's largest angle is twice the smallest one. determine the sides of a triangle
Will be with you shortly
Inkoom
3, 4, 5 principle from geo? sounds like a 90 and 2 45's to me that my answer
Neese
answer is 2, 3, 4
Gaurav
prove that [a+b, b+c, c+a]= 2[a b c]
can't prove
Akugry
i can prove [a+b+b+c+c+a]=2[a+b+c]
this is simple
Akugry
hi
Stormzy
x exposant 4 + 4 x exposant 3 + 8 exposant 2 + 4 x + 1 = 0
x exposent4+4x exposent3+8x exposent2+4x+1=0
HERVE
How can I solve for a domain and a codomains in a given function?
ranges
EDWIN
Thank you I mean range sir.
Oliver
proof for set theory
don't you know?
Inkoom
find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad By By By By Sam Luong    By    