<< Chapter < Page Chapter >> Page >

Wiskunde

Graad 5

Gewone breuke en desimale breuke

Module 35

Om gewone breuke te herken en te klassifiseer

Aktiwiteit 1:

Om gewone breuke te herken en te klassifiseer ten einde hulle te vergelyk [lu 1.3.2]

VERWANTSKAPSTEKENS (<;>; =)

1. Vergelyk die volgende breuke en vul dan<;>of = in:

1.1 3 5 size 12{ { { size 8{3} } over { size 8{5} } } } {} 7 10 size 12{ { { size 8{7} } over { size 8{"10"} } } } {}

1.2 1 3 size 12{ { { size 8{1} } over { size 8{3} } } } {} 1 4 size 12{ { { size 8{1} } over { size 8{4} } } } {}

1.3 5 8 size 12{ { { size 8{5} } over { size 8{8} } } } {} 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

1.4 1 7 size 12{ { { size 8{1} } over { size 8{7} } } } {} 1 5 size 12{ { { size 8{1} } over { size 8{5} } } } {}

1.5 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {} 6 8 size 12{ { { size 8{6} } over { size 8{8} } } } {}

1.6 3 8 size 12{ { { size 8{3} } over { size 8{8} } } } {} 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

1.7 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {} 9 12 size 12{ { { size 8{9} } over { size 8{"12"} } } } {}

1.8 3 5 size 12{ { { size 8{3} } over { size 8{5} } } } {} 7 10 size 12{ { { size 8{7} } over { size 8{"10"} } } } {}

1.9 2 11 size 12{ { { size 8{2} } over { size 8{"11"} } } } {} 1 12 size 12{ { { size 8{1} } over { size 8{"12"} } } } {}

1.10 12 12 size 12{ { { size 8{"12"} } over { size 8{"12"} } } } {} 9 9 size 12{ { { size 8{9} } over { size 8{9} } } } {}

2. Vergelyk weer die volgende breuke en omkring dan die grootste een in elk van die volgende:

2.1 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} ; 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {}

2.2 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} ; 3 6 size 12{ { { size 8{3} } over { size 8{6} } } } {}

2.3 3 5 size 12{ { { size 8{3} } over { size 8{5} } } } {} ; 9 10 size 12{ { { size 8{9} } over { size 8{"10"} } } } {}

2.4 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} ; 2 6 size 12{ { { size 8{2} } over { size 8{6} } } } {}

2.5 3 8 size 12{ { { size 8{3} } over { size 8{8} } } } {} ; 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

2.6 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {} ; 4 10 size 12{ { { size 8{4} } over { size 8{"10"} } } } {}

Klasbespreking

HOE kan ons bogenoemde Wiskundig bepaal as ons nie ’n diagram het om na te kyk nie?

3. In die volgende aktiwiteit sal jy sien hoe belangrik jou kennis van ekwivalente breuke is, want as jy dit onder die knie het, is dit sommer kinderspeletjies om die breuke met mekaar te vergelyk.

Gebruik die reël soos julle dit in jul klasbespreking bepaal het, en vul<;>of = in:

3.1 3 5 size 12{ { { size 8{3} } over { size 8{5} } } } {} 7 15 size 12{ { { size 8{7} } over { size 8{"15"} } } } {}

3.2 7 11 size 12{ { { size 8{7} } over { size 8{"11"} } } } {} 13 22 size 12{ { { size 8{"13"} } over { size 8{"22"} } } } {}

3.3 5 9 size 12{ { { size 8{5} } over { size 8{9} } } } {} 15 27 size 12{ { { size 8{"15"} } over { size 8{"27"} } } } {}

3.4 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {} 20 24 size 12{ { { size 8{"20"} } over { size 8{"24"} } } } {}

4. Gebruik nou jul kennis en vul in:<;>of = :

4.1 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {} 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {}

4.2 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {}

4.3 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {} 7 9 size 12{ { { size 8{7} } over { size 8{9} } } } {}

4.4 7 8 size 12{ { { size 8{7} } over { size 8{8} } } } {} 6 7 size 12{ { { size 8{6} } over { size 8{7} } } } {}

Aktiwiteit 2:

Om te bereken deur seleksie en gebruik van bewerkings [lu 1.8.3]

1. Verdeel in groepe van drie. Kyk of julle die volgende probleme kan oplos.

1.1 Gizelle en haar tweelingbroer, Donovan, kry elke maand sakgeld. Gizelle spaar twee sesdes van haar sakgeld. Donovan spaar vier negendes van syne. Wie spaar die meeste as hul ewe veel sakgeld kry?

1.2 Ma bak graag pannekoeke. Sy gee ‘n driekwart aan Jake en sy vriende om te eet. Hierna bak Ma dieselfde hoeveelheid pannekoeke. Sy stuur vier vyfdes daarvan skool toe vir Dimitri en sy maats om te geniet. Wie het die meeste pannekoeke by Ma gekry?

1.3 Vusi en Sipho skryf dieselfde toets. Vusi het vier sewendes van die vrae reg beantwoord. Sipho het vyf agstes korrek. Wie het die beste in die toets gevaar?

1.4 Twee taxi’s vervoer passasiers tussen Johannesburg en Pretoria. Die een taxi is twee derdes vol, terwyl die ander een driekwart vol is. Watter taxi vervoer die meeste passasiers?

2. Elke groep kry nou die geleentheid om hul oplossings vir die probleme met die res van die klas te deel.

3. Hou ‘n klasgesprek oor die beste metode om dié soort probleem op te los.

Nog ’n KOPKRAPPER!

Rangskik die volgende breuke van groot na klein:

2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} ; 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} ; 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {} ; 7 9 size 12{ { { size 8{7} } over { size 8{9} } } } {}

VEREENVOUDIGING

Het jy geweet?

Om ’n breuk in sy eenvoudigste vorm te skryf, deel ons die teller en die noemer deur dieselfde getal. Die waarde van die breuk verander nie, want ons deel eintlik die breuk deur 1.

Bv. 18 24 size 12{ { {"18"} over {"24"} } } {}
6
6
= 3 4 size 12{ { {3} over {4} } } {} en 10 15 size 12{ { {"10"} over {"15"} } } {}
5
5
= 2 3 size 12{ { {2} over {3} } } {}

Aktiwiteit 3:

Om gewone breuke te vereenvoudig [lu 1.3.2]

1. Noudat jy weet hoe om ‘n breuk te vereenvoudig, kyk of jy die volgende tabel kan voltooi:

Breuk deur Vereenvoudig
Bv. 18 27 size 12{ { { size 8{"18"} } over { size 8{"27"} } } } {} 9 9 size 12{ { { size 8{9} } over { size 8{9} } } } {} 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {}
1.1 40 45 size 12{ { { size 8{"40"} } over { size 8{"45"} } } } {} .................. ..................
1.2 15 25 size 12{ { { size 8{"15"} } over { size 8{"25"} } } } {} .................. ..................
1.3 12 16 size 12{ { { size 8{"12"} } over { size 8{"16"} } } } {} .................. ..................
1.4 24 30 size 12{ { { size 8{"24"} } over { size 8{"30"} } } } {} .................. ..................
1.5 48 54 size 12{ { { size 8{"48"} } over { size 8{"54"} } } } {} .................. ..................

Aktiwiteit 4:

Om ‘n reeks tegnieke te gebruik om berekeninge te doen [lu 1.10.3]

1. Kom ons rond nou gemengde getalle af tot die naaste heelgetal. Verbind die getal in kolom A met die korrekte antwoord in kolom B.

Questions & Answers

Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
hi
Loga
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 5. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10993/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 5' conversation and receive update notifications?

Ask