<< Chapter < Page
  Wiskunde graad 7   Page 1 / 1
Chapter >> Page >

Wiskunde

Gewone breuke

Opvoeders afdeling

Memorandum

  • b)
10 10
1 10 size 12{ { { size 8{1} } over { size 8{"10"} } } } {} 1 10 size 12{ { { size 8{1} } over { size 8{"10"} } } } {}

Answers is the same

(i) = 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {} x 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

x = 3 8 size 12{ { { size 8{3} } over { size 8{8} } } } {}

y = 18 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {}

(ii) = 7 x 8 3 size 12{ { { size 8{8} } over { size 8{3} } } } {}

= 56 3 size 12{ { { size 8{"56"} } over { size 8{3} } } } {}

  1. = 6 1 size 12{ { { size 8{6} } over { size 8{1} } } } {} x 5 4 size 12{ { { size 8{5} } over { size 8{4} } } } {}

= 30 4 size 12{ { { size 8{"30"} } over { size 8{4} } } } {}

m = 7 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

(iv) = 2 7 size 12{ { { size 8{2} } over { size 8{7} } } } {} x 1 9 size 12{ { { size 8{1} } over { size 8{9} } } } {}

n = 2 63 size 12{ { { size 8{2} } over { size 8{"63"} } } } {}

  • b)

(i) x = 3 8 size 12{ { { size 8{3} } over { size 8{8} } } } {} 9 24 size 12{ { { size 8{9} } over { size 8{"24"} } } } {}

= 3 8 size 12{ { { size 8{3} } over { size 8{8} } } } {} x 24 9 size 12{ { { size 8{"24"} } over { size 8{9} } } } {}

x = 1

(ii) k = 15 18 size 12{ { { size 8{"15"} } over { size 8{"18"} } } } {} 45 6 size 12{ { { size 8{"45"} } over { size 8{6} } } } {}

= 15 18 size 12{ { { size 8{"15"} } over { size 8{"18"} } } } {} x 6 45 size 12{ { { size 8{6} } over { size 8{"45"} } } } {}

k = 1 9 size 12{ { { size 8{1} } over { size 8{9} } } } {}

(iii) c = 7 9 size 12{ { { size 8{7} } over { size 8{9} } } } {} 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {}

= 7 9 size 12{ { { size 8{7} } over { size 8{9} } } } {} x 6 5 size 12{ { { size 8{6} } over { size 8{5} } } } {}

c = 14 15 size 12{ { { size 8{"14"} } over { size 8{"15"} } } } {}

(iv) f = 11 12 size 12{ { { size 8{"11"} } over { size 8{"12"} } } } {} 6 5 size 12{ { { size 8{6} } over { size 8{5} } } } {}

= 11 12 size 12{ { { size 8{"11"} } over { size 8{"12"} } } } {} x 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {}

= 55 72 size 12{ { { size 8{"55"} } over { size 8{"72"} } } } {}

23.3 c)

(i) b = 2 1 4 size 12{2 { { size 8{1} } over { size 8{4} } } } {} 3 2 size 12{ { { size 8{3} } over { size 8{2} } } } {}

= 9 4 size 12{ { { size 8{9} } over { size 8{4} } } } {} x 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {}

b = 1 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

(ii) e = 3 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {}  2 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

= 19 5 size 12{ { { size 8{"19"} } over { size 8{5} } } } {} x 2 5 size 12{ { { size 8{2} } over { size 8{5} } } } {}

e = 38 25 size 12{ { { size 8{"38"} } over { size 8{"25"} } } } {}

e = 1 13 25 size 12{ { { size 8{"13"} } over { size 8{"25"} } } } {}

  1. g = 3 4 7 size 12{ { { size 8{4} } over { size 8{7} } } } {}  1 2 7 size 12{ { { size 8{2} } over { size 8{7} } } } {}

= 25 7 size 12{ { { size 8{"25"} } over { size 8{7} } } } {} x 7 9 size 12{ { { size 8{7} } over { size 8{9} } } } {}

= 25 9 size 12{ { { size 8{"25"} } over { size 8{9} } } } {}

g = 2 7 9 size 12{ { { size 8{7} } over { size 8{9} } } } {}

(iv) r = 15 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}  5 1 4 size 12{ { { size 8{1} } over { size 8{4} } } } {}

= 31 2 size 12{ { { size 8{"31"} } over { size 8{2} } } } {} x 4 21 size 12{ { { size 8{4} } over { size 8{"21"} } } } {}

= 62 21 size 12{ { { size 8{"62"} } over { size 8{"21"} } } } {}

r = 2 20 21 size 12{ { { size 8{"20"} } over { size 8{"21"} } } } {}

Leerders afdeling

Inhoud

Aktiwiteit: deling met breuke [lu 1.7.3, lu 2.1.5]

23. Kom ons kyk nou na DELING MET BREUKE!

23.1 Deling van heelgetalle deur breuke en andersom :

a) Werk saam met ’n maat en kyk goed na die volgende probleme.

Ma bak vyf koeke en wil graag vir jou en jou maats elkeen ’n halwe ( 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} ) stuk gee. Hoeveel maats kan van die koek eet?

  • Op ’n getallelyn lyk dit so:

Dus: 5 ÷ 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} = 1010 kinders kan elkeen 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} koek kry.

Ma bak weer, maar hierdie keer net een reghoekige koek. Sy besluit om die helfte daarvan tussen haar vyf kinders te verdeel. Watter breuk kry elkeen?

  • Kom ons maak ’n skets daarvan!

12345

Kan jy sien dat elke kind een tiende ( 1 10 size 12{ { { size 8{1} } over { size 8{"10"} } } } {} ) van die koek sal kry?Dus: 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} ÷ 5 = 1 10 size 12{ { { size 8{1} } over { size 8{"10"} } } } {}

b) Voltooi die tabel:

5 ÷ 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} = ............ 5 × 2 1 size 12{ { { size 8{2} } over { size 8{1} } } } {} = ............
1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} ÷ 5 1 size 12{ { { size 8{5} } over { size 8{1} } } } {} = ............ 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} × 1 5 size 12{ { { size 8{1} } over { size 8{5} } } } {} = ............

Wat merk jy op? ___________________________________________________

_____________________________________________________________________

c) Het jy geweet?

Enige deelsom met breuke kan in ’n vermenigvuldigingsom verander word! Ons doen dit deur die deler in sy resiprook te verander. Ons “keer dus die deler om”!

Dus:

÷ 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} =
´ 2 1 size 12{ { { size 8{2} } over { size 8{1} } } } {} = 10

d) Verbind kolom A met die korrekte antwoord in kolom B:

A B
÷ deur 5 × met 4 3 size 12{ { { size 8{4} } over { size 8{3} } } } {}
÷ deur 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {} × met 3
÷ deur 7 8 size 12{ { { size 8{7} } over { size 8{8} } } } {} × met 5
÷ deur 1 3 size 12{ { { size 8{1} } over { size 8{3} } } } {} × met 1 5 size 12{ { { size 8{1} } over { size 8{5} } } } {}
÷ deur 1 5 size 12{ { { size 8{1} } over { size 8{5} } } } {} × met 8 7 size 12{ { { size 8{8} } over { size 8{7} } } } {}

e) Bereken die volgende:

i) x = 3 4 ÷ 2 size 12{x= { { size 8{3} } over { size 8{4} } } div 2} {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

ii) y = 7 ÷ 3 8 size 12{y=7 div { { size 8{3} } over { size 8{8} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

iii) m = 6 ÷ 4 5 size 12{m=6 div { { size 8{4} } over { size 8{5} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

iv) n = 2 7 ÷ 9 size 12{n= { { size 8{2} } over { size 8{7} } } div 9} {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

23.2 Deling van breuke deur breuke:

a) Werk weer saam met ’n maat en bestudeer die volgende:

x = 6 25 ÷ 3 5 size 12{x= { { size 8{6} } over { size 8{"25"} } } div { { size 8{3} } over { size 8{5} } } } {}

Ek weet ek moet die volgende stappe volg:

1. Verander die ÷ in ×

2. Draai die breuk na die ÷ (deler) om – kry dus resiprook

3. Vermenigvuldig soos gewoonlik: teller × teller noemer × noemer size 12{ { { ital "teller" times ital "teller"} over { ital "noemer" times ital "noemer"} } } {}

Dus: 6 25 ÷ 3 5 = 6 25 × 5 3 size 12{ { { size 8{6} } over { size 8{"25"} } } div { { size 8{3} } over { size 8{5} } } = { { size 8{6} } over { size 8{"25"} } } times { { size 8{5} } over { size 8{3} } } } {}

Ek kanselleer waar ek kan:
2 6
5 25
×
5 1
3 1

Die antwoord is dus 2 × 1 5 × 1 = 2 5 size 12{ { { size 8{2 times 1} } over { size 8{5 times 1} } } = { { size 8{2} } over { size 8{5} } } } {}

b) Probeer die volgende op jou eie:

i) x = 3 8 ÷ 9 24 size 12{x= { { size 8{3} } over { size 8{8} } } div { { size 8{9} } over { size 8{"24"} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

ii) k = 15 18 ÷ 45 6 size 12{k= { { size 8{"15"} } over { size 8{"18"} } } div { { size 8{"45"} } over { size 8{6} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

iii) c = 7 9 ÷ 5 6 size 12{c= { { size 8{7} } over { size 8{9} } } div { { size 8{5} } over { size 8{6} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

iv) f = 11 12 ÷ 6 5 size 12{f= { { size 8{"11"} } over { size 8{"12"} } } div { { size 8{6} } over { size 8{5} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

23.3 Deling met gemengde getalle:

a) Kan jy die volgende probleem vir ’n maat verduidelik?

’n Gesin eet 1 en ’n halwe ( 1 1 2 size 12{1 { { size 8{1} } over { size 8{2} } } } {} ) pizza. As elkeen net een kwart ( 1 4 size 12{ { { size 8{1} } over { size 8{4} } } } {} ) van die pizza eet, uit hoeveel lede bestaan die gesin?

  • Ek moet 1 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} ÷ 1 4 size 12{ { { size 8{1} } over { size 8{4} } } } {} bereken.
  • Dis makliker as ek dit teken:

It’s easier if I draw it:

  • Die antwoord is dus 6.
  • Wiskundig skryf ek dit so:

y = 1 1 2 ÷ 1 4 3 2 ÷ 1 4 3 2 × 4 1 12 2 6 alignl { stack { size 12{y=1 { { size 8{1} } over { size 8{2} } } div { { size 8{1} } over { size 8{4} } } } {} #= { { size 8{3} } over { size 8{2} } } div { { size 8{1} } over { size 8{4} } } {} # = { { size 8{3} } over { size 8{2} } } times { { size 8{4} } over { size 8{1} } } {} #= { { size 8{"12"} } over { size 8{2} } } {} # =6 {}} } {}

  • Ek verkies om ’n getallelyn te gebruik:

b) Het jy geweet?

Ons verander gemengde getalle eers in onegte breuke voordat ons die antwoord bereken.

c) Probeer op jou eie:

i) b = 2 1 4 ÷ 3 2 size 12{b=2 { { size 8{1} } over { size 8{4} } } div { { size 8{3} } over { size 8{2} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

ii) e = 3 4 5 ÷ 2 1 2 size 12{e=3 { { size 8{4} } over { size 8{5} } } div 2 { { size 8{1} } over { size 8{2} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

iii) g = 3 4 7 ÷ 1 2 7 size 12{g=3 { { size 8{4} } over { size 8{7} } } div 1 { { size 8{2} } over { size 8{7} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

iv) r = 15 1 2 ÷ 5 1 4 size 12{r="15" { { size 8{1} } over { size 8{2} } } div 5 { { size 8{1} } over { size 8{4} } } } {}

___________________________________________________

___________________________________________________

___________________________________________________

Assessering

Leeruitkomste 1: Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.7: Dit is duidelik wanneer die leerder skat en bereken deur geskikte bewerkings vir probleme wat die volgende behels, kies en gebruik:

1.7.3: optelling, aftrekking en vermenigvuldiging van gewone breuke.

Leeruitkomste 2: Die leerder is in staat om patrone en verwantskappe te herken, te beskryf en voor te stel en probleme op te los deur algebraïese taal en vaardighede te gebruik.

Assesseringstandaard 2.1: Dit is duidelik wanneer die leerder numeriese en meetkundige patrone ondersoek en uitbrei op soek na ‘n verwantskap of reëls, insluitend patrone;

2.1.5: voorgestel in tabelle.

Questions & Answers

Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
hi
Loga
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 7. OpenStax CNX. Oct 21, 2009 Download for free at http://cnx.org/content/col11076/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 7' conversation and receive update notifications?

Ask