<< Chapter < Page Chapter >> Page >

Waste management strategies

The long-recognized hierarchy of management of wastes, in order of preference consists of prevention, minimization, recycling and reuse    , biological treatment    , incineration, and landfill disposal (see Figure Hierarchy of Waste Management ).

Hierarchy of Waste Management
Hierarchy of Waste Management Figure shows the hierarchy of management of wastes in order or preference, starting with prevention as the most favorable to disposal as the least favorable option. Source: Drstuey via Wikimedia Commons

Waste prevention

The ideal waste management alternative is to prevent waste generation in the first place. Hence, waste prevention    is a basic goal of all the waste management strategies. Numerous technologies can be employed throughout the manufacturing, use, or post-use portions of product life cycles to eliminate waste and, in turn, reduce or prevent pollution . Some representative strategies include environmentally conscious manufacturing methods that incorporate less hazardous or harmful materials, the use of modern leakage detection systems for material storage, innovative chemical neutralization techniques to reduce reactivity, or water saving technologies that reduce the need for fresh water inputs.

Waste minimization

In many cases, wastes cannot be outright eliminated from a variety of processes. However, numerous strategies can be implemented to reduce or minimize waste generation. Waste minimization , or source reduction, refers to the collective strategies of design and fabrication of products or services that minimize the amount of generated waste and/or reduce the toxicity of the resultant waste. Often these efforts come about from identified trends or specific products that may be causing problems in the waste stream and the subsequent steps taken to halt these problems. In industry, waste can be reduced by reusing materials, using less hazardous substitute materials, or by modifying components of design and processing. Many benefits can be realized by waste minimization or source reduction, including reduced use of natural resources and the reduction of toxicity of wastes.

Waste minimization strategies are extremely common in manufacturing applications; the savings of material use preserves resources but also saves significant manufacturing related costs. Advancements in streamlined packaging reduces material use, increased distribution efficiency reduces fuel consumption and resulting air emissions. Further, engineered building materials can often be designed with specific favorable properties that, when accounted for in overall structural design, can greatly reduce the overall mass and weight of material needed for a given structure. This reduces the need for excess material and reduces the waste associated with component fabrication.

The dry cleaning industry provides an excellent example of product substitution to reduce toxic waste generation. For decades, dry cleaners used tetrachloroethylene, or "perc" as a dry cleaning solvent. Although effective, tetrachloroethylene is a relatively toxic compound. Additionally, it is easily introduced into the environment, where it is highly recalcitrant due to its physical properties. Further, when its degradation occurs, the intermediate daughter products generated are more toxic to human health and the environment.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask