<< Chapter < Page Chapter >> Page >

Given the toolkit function f ( x ) = x 2 , graph g ( x ) = f ( x ) and h ( x ) = f ( x ) . Take note of any surprising behavior for these functions.

Graph of x^2 and its reflections.

Notice: g ( x ) = f ( x ) looks the same as f ( x ) .

Got questions? Get instant answers now!

Determining even and odd functions

Some functions exhibit symmetry so that reflections result in the original graph. For example, horizontally reflecting the toolkit functions f ( x ) = x 2 or f ( x ) = | x | will result in the original graph. We say that these types of graphs are symmetric about the y -axis. Functions whose graphs are symmetric about the y -axis are called even functions.

If the graphs of f ( x ) = x 3 or f ( x ) = 1 x were reflected over both axes, the result would be the original graph, as shown in [link] .

Graph of x^3 and its reflections.
(a) The cubic toolkit function (b) Horizontal reflection of the cubic toolkit function (c) Horizontal and vertical reflections reproduce the original cubic function.

We say that these graphs are symmetric about the origin. A function with a graph that is symmetric about the origin is called an odd function .

Note: A function can be neither even nor odd if it does not exhibit either symmetry. For example, f ( x ) = 2 x is neither even nor odd. Also, the only function that is both even and odd is the constant function f ( x ) = 0.

Even and odd functions

A function is called an even function    if for every input x

f ( x ) = f ( x )

The graph of an even function is symmetric about the y - axis.

A function is called an odd function    if for every input x

f ( x ) = f ( x )

The graph of an odd function is symmetric about the origin.

Given the formula for a function, determine if the function is even, odd, or neither.

  1. Determine whether the function satisfies f ( x ) = f ( x ) . If it does, it is even.
  2. Determine whether the function satisfies f ( x ) = f ( x ) . If it does, it is odd.
  3. If the function does not satisfy either rule, it is neither even nor odd.

Determining whether a function is even, odd, or neither

Is the function f ( x ) = x 3 + 2 x even, odd, or neither?

Without looking at a graph, we can determine whether the function is even or odd by finding formulas for the reflections and determining if they return us to the original function. Let’s begin with the rule for even functions.

f ( x ) = ( x ) 3 + 2 ( x ) = x 3 2 x

This does not return us to the original function, so this function is not even. We can now test the rule for odd functions.

f ( x ) = ( x 3 2 x ) = x 3 + 2 x

Because f ( x ) = f ( x ) , this is an odd function.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Is the function f ( s ) = s 4 + 3 s 2 + 7 even, odd, or neither?


Got questions? Get instant answers now!

Graphing functions using stretches and compressions

Adding a constant to the inputs or outputs of a function changed the position of a graph with respect to the axes, but it did not affect the shape of a graph. We now explore the effects of multiplying the inputs or outputs by some quantity.

We can transform the inside (input values) of a function or we can transform the outside (output values) of a function. Each change has a specific effect that can be seen graphically.

Vertical stretches and compressions

When we multiply a function by a positive constant, we get a function whose graph is stretched or compressed vertically in relation to the graph of the original function. If the constant is greater than 1, we get a vertical stretch ; if the constant is between 0 and 1, we get a vertical compression . [link] shows a function multiplied by constant factors 2 and 0.5 and the resulting vertical stretch and compression.

Questions & Answers

can you not take the square root of a negative number
Sharon Reply
No because a negative times a negative is a positive. No matter what you do you can never multiply the same number by itself and end with a negative
Actually you can. you get what's called an Imaginary number denoted by i which is represented on the complex plane. The reply above would be correct if we were still confined to the "real" number line.
Suppose P= {-3,1,3} Q={-3,-2-1} and R= {-2,2,3}.what is the intersection
Elaine Reply
can I get some pretty basic questions
Ama Reply
In what way does set notation relate to function notation
is precalculus needed to take caculus
Amara Reply
It depends on what you already know. Just test yourself with some precalculus questions. If you find them easy, you're good to go.
the solution doesn't seem right for this problem
Mars Reply
what is the domain of f(x)=x-4/x^2-2x-15 then
Conney Reply
x is different from -5&3
All real x except 5 and - 3
how to prroved cos⁴x-sin⁴x= cos²x-sin²x are equal
jeric Reply
Don't think that you can.
By using some imaginary no.
how do you provided cos⁴x-sin⁴x = cos²x-sin²x are equal
jeric Reply
What are the question marks for?
Someone should please solve it for me Add 2over ×+3 +y-4 over 5 simplify (×+a)with square root of two -×root 2 all over a multiply 1over ×-y{(×-y)(×+y)} over ×y
Abena Reply
For the first question, I got (3y-2)/15 Second one, I got Root 2 Third one, I got 1/(y to the fourth power) I dont if it's right cause I can barely understand the question.
Is under distribute property, inverse function, algebra and addition and multiplication function; so is a combined question
find the equation of the line if m=3, and b=-2
Ashley Reply
graph the following linear equation using intercepts method. 2x+y=4
ok, one moment
how do I post your graph for you?
it won't let me send an image?
also for the first one... y=mx+b so.... y=3x-2
y=mx+b you were already given the 'm' and 'b'. so.. y=3x-2
Please were did you get y=mx+b from
y=mx+b is the formula of a straight line. where m = the slope & b = where the line crosses the y-axis. In this case, being that the "m" and "b", are given, all you have to do is plug them into the formula to complete the equation.
thanks Tommy
0=3x-2 2=3x x=3/2 then . y=3/2X-2 I think
co ordinates for x x=0,(-2,0) x=1,(1,1) x=2,(2,4)
"7"has an open circle and "10"has a filled in circle who can I have a set builder notation
Fiston Reply
Where do the rays point?
x=-b+_Гb2-(4ac) ______________ 2a
Ahlicia Reply
I've run into this: x = r*cos(angle1 + angle2) Which expands to: x = r(cos(angle1)*cos(angle2) - sin(angle1)*sin(angle2)) The r value confuses me here, because distributing it makes: (r*cos(angle2))(cos(angle1) - (r*sin(angle2))(sin(angle1)) How does this make sense? Why does the r distribute once
Carlos Reply
so good
this is an identity when 2 adding two angles within a cosine. it's called the cosine sum formula. there is also a different formula when cosine has an angle minus another angle it's called the sum and difference formulas and they are under any list of trig identities
strategies to form the general term
consider r(a+b) = ra + rb. The a and b are the trig identity.
How can you tell what type of parent function a graph is ?
Mary Reply
generally by how the graph looks and understanding what the base parent functions look like and perform on a graph
if you have a graphed line, you can have an idea by how the directions of the line turns, i.e. negative, positive, zero
y=x will obviously be a straight line with a zero slope
y=x^2 will have a parabolic line opening to positive infinity on both sides of the y axis vice versa with y=-x^2 you'll have both ends of the parabolic line pointing downward heading to negative infinity on both sides of the y axis
y=x will be a straight line, but it will have a slope of one. Remember, if y=1 then x=1, so for every unit you rise you move over positively one unit. To get a straight line with a slope of 0, set y=1 or any integer.
yes, correction on my end, I meant slope of 1 instead of slope of 0
what is f(x)=
Karim Reply
I don't understand
Typically a function 'f' will take 'x' as input, and produce 'y' as output. As 'f(x)=y'. According to Google, "The range of a function is the complete set of all possible resulting values of the dependent variable (y, usually), after we have substituted the domain."
Sorry, I don't know where the "Â"s came from. They shouldn't be there. Just ignore them. :-)
It is the  that should not be there. It doesn't seem to show if encloses in quotation marks. "Â" or 'Â' ... Â
Now it shows, go figure?

Get the best Precalculus course in your pocket!

Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?