<< Chapter < Page Chapter >> Page >

Find a point on the graph we drew in [link] that has a negative x -value.

Possible answers include ( 3 , 7 ) , ( 6 , 9 ) , or ( 9 , 11 ) .

Got questions? Get instant answers now!

Graphing a function using transformations

Another option for graphing is to use transformations of the identity function f ( x ) = x . A function may be transformed by a shift up, down, left, or right. A function may also be transformed using a reflection, stretch, or compression.

Vertical stretch or compression

In the equation f ( x ) = m x , the m is acting as the vertical stretch    or compression of the identity function. When m is negative, there is also a vertical reflection of the graph. Notice in [link] that multiplying the equation of f ( x ) = x by m stretches the graph of f by a factor of m units if m > 1 and compresses the graph of f by a factor of m units if 0 < m < 1. This means the larger the absolute value of m , the steeper the slope.

Vertical stretches and compressions and reflections on the function f ( x ) = x .

Vertical shift

In f ( x ) = m x + b , the b acts as the vertical shift    , moving the graph up and down without affecting the slope of the line. Notice in [link] that adding a value of b to the equation of f ( x ) = x shifts the graph of f a total of b units up if b is positive and | b | units down if b is negative.

This graph illustrates vertical shifts of the function f ( x ) = x .

Using vertical stretches or compressions along with vertical shifts is another way to look at identifying different types of linear functions. Although this may not be the easiest way to graph this type of function, it is still important to practice each method.

Given the equation of a linear function, use transformations to graph the linear function in the form f ( x ) = m x + b .

  1. Graph f ( x ) = x .
  2. Vertically stretch or compress the graph by a factor m .
  3. Shift the graph up or down b units.

Graphing by using transformations

Graph f ( x ) = 1 2 x 3 using transformations.

The equation for the function shows that m = 1 2 so the identity function is vertically compressed by 1 2 . The equation for the function also shows that b = −3 so the identity function is vertically shifted down 3 units. First, graph the identity function, and show the vertical compression as in [link] .

The function, y = x , compressed by a factor of 1 2 .

Then show the vertical shift as in [link] .

The function y = 1 2 x , shifted down 3 units.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Graph f ( x ) = 4 + 2 x , using transformations.

Got questions? Get instant answers now!

In [link] , could we have sketched the graph by reversing the order of the transformations?

No. The order of the transformations follows the order of operations. When the function is evaluated at a given input, the corresponding output is calculated by following the order of operations. This is why we performed the compression first. For example, following the order: Let the input be 2.

f (2) = 1 2 (2) 3 = 1 3 = 2

Writing the equation for a function from the graph of a line

Recall that in Linear Functions , we wrote the equation for a linear function from a graph. Now we can extend what we know about graphing linear functions to analyze graphs a little more closely. Begin by taking a look at [link] . We can see right away that the graph crosses the y -axis at the point ( 0 ,  4 ) so this is the y -intercept.

Questions & Answers

foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
Churlene Reply
difference between calculus and pre calculus?
Asma Reply
give me an example of a problem so that I can practice answering
Jenefa Reply
dont forget the cube in each variable ;)
of she solves that, well ... then she has a lot of computational force under her command ....
what is a function?
CJ Reply
I want to learn about the law of exponent
Quera Reply
explain this
Hinderson Reply
what is functions?
Angel Reply
A mathematical relation such that every input has only one out.
yes..it is a relationo of orders pairs of sets one or more input that leads to a exactly one output.
Is a rule that assigns to each element X in a set A exactly one element, called F(x), in a set B.
If the plane intersects the cone (either above or below) horizontally, what figure will be created?
Feemark Reply
can you not take the square root of a negative number
Sharon Reply
No because a negative times a negative is a positive. No matter what you do you can never multiply the same number by itself and end with a negative
Actually you can. you get what's called an Imaginary number denoted by i which is represented on the complex plane. The reply above would be correct if we were still confined to the "real" number line.
Suppose P= {-3,1,3} Q={-3,-2-1} and R= {-2,2,3}.what is the intersection
Elaine Reply
can I get some pretty basic questions
Ama Reply
In what way does set notation relate to function notation
is precalculus needed to take caculus
Amara Reply
It depends on what you already know. Just test yourself with some precalculus questions. If you find them easy, you're good to go.
the solution doesn't seem right for this problem
Mars Reply
what is the domain of f(x)=x-4/x^2-2x-15 then
Conney Reply
x is different from -5&3
All real x except 5 and - 3
how to prroved cos⁴x-sin⁴x= cos²x-sin²x are equal
jeric Reply
Don't think that you can.
By using some imaginary no.
Practice Key Terms 5

Get the best Precalculus course in your pocket!

Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?