# 5.5 Zeros of polynomial functions  (Page 7/14)

 Page 7 / 14

A shipping container in the shape of a rectangular solid must have a volume of 84 cubic meters. The client tells the manufacturer that, because of the contents, the length of the container must be one meter longer than the width, and the height must be one meter greater than twice the width. What should the dimensions of the container be?

3 meters by 4 meters by 7 meters

Access these online resources for additional instruction and practice with zeros of polynomial functions.

## Key concepts

• To find $\text{\hspace{0.17em}}f\left(k\right),\text{\hspace{0.17em}}$ determine the remainder of the polynomial $\text{\hspace{0.17em}}f\left(x\right)\text{\hspace{0.17em}}$ when it is divided by $\text{\hspace{0.17em}}x-k.\text{\hspace{0.17em}}$ This is known as the Remainder Theorem. See [link] .
• According to the Factor Theorem, $\text{\hspace{0.17em}}k\text{\hspace{0.17em}}$ is a zero of $\text{\hspace{0.17em}}f\left(x\right)\text{\hspace{0.17em}}$ if and only if $\text{\hspace{0.17em}}\left(x-k\right)\text{\hspace{0.17em}}$ is a factor of $\text{\hspace{0.17em}}f\left(x\right).$ See [link] .
• According to the Rational Zero Theorem, each rational zero of a polynomial function with integer coefficients will be equal to a factor of the constant term divided by a factor of the leading coefficient. See [link] and [link] .
• When the leading coefficient is 1, the possible rational zeros are the factors of the constant term.
• Synthetic division can be used to find the zeros of a polynomial function. See [link] .
• According to the Fundamental Theorem, every polynomial function has at least one complex zero. See [link] .
• Every polynomial function with degree greater than 0 has at least one complex zero.
• Allowing for multiplicities, a polynomial function will have the same number of factors as its degree. Each factor will be in the form $\text{\hspace{0.17em}}\left(x-c\right),\text{\hspace{0.17em}}$ where $\text{\hspace{0.17em}}c\text{\hspace{0.17em}}$ is a complex number. See [link] .
• The number of positive real zeros of a polynomial function is either the number of sign changes of the function or less than the number of sign changes by an even integer.
• The number of negative real zeros of a polynomial function is either the number of sign changes of $\text{\hspace{0.17em}}f\left(-x\right)\text{\hspace{0.17em}}$ or less than the number of sign changes by an even integer. See [link] .
• Polynomial equations model many real-world scenarios. Solving the equations is easiest done by synthetic division. See [link] .

## Verbal

Describe a use for the Remainder Theorem.

The theorem can be used to evaluate a polynomial.

Explain why the Rational Zero Theorem does not guarantee finding zeros of a polynomial function.

What is the difference between rational and real zeros?

Rational zeros can be expressed as fractions whereas real zeros include irrational numbers.

If Descartes’ Rule of Signs reveals a no change of signs or one sign of changes, what specific conclusion can be drawn?

If synthetic division reveals a zero, why should we try that value again as a possible solution?

Polynomial functions can have repeated zeros, so the fact that number is a zero doesn’t preclude it being a zero again.

## Algebraic

For the following exercises, use the Remainder Theorem to find the remainder.

$\left({x}^{4}-9{x}^{2}+14\right)÷\left(x-2\right)$

$\left(3{x}^{3}-2{x}^{2}+x-4\right)÷\left(x+3\right)$

$-106$

$\left({x}^{4}+5{x}^{3}-4x-17\right)÷\left(x+1\right)$

$\left(-3{x}^{2}+6x+24\right)÷\left(x-4\right)$

$\text{\hspace{0.17em}}0\text{\hspace{0.17em}}$

$\left(5{x}^{5}-4{x}^{4}+3{x}^{3}-2{x}^{2}+x-1\right)÷\left(x+6\right)$

the third and the seventh terms of a G.P are 81 and 16, find the first and fifth terms.
if a=3, b =4 and c=5 find the six trigonometric value sin
pls how do I factorize x⁴+x³-7x²-x+6=0
in a function the input value is called
how do I test for values on the number line
if a=4 b=4 then a+b=
a+b+2ab
Kin
commulative principle
a+b= 4+4=8
Mimi
If a=4 and b=4 then we add the value of a and b i.e a+b=4+4=8.
Tariq
what are examples of natural number
an equation for the line that goes through the point (-1,12) and has a slope of 2,3
3y=-9x+25
Ishaq
show that the set of natural numberdoes not from agroup with addition or multiplication butit forms aseni group with respect toaaddition as well as multiplication
x^20+x^15+x^10+x^5/x^2+1
evaluate each algebraic expression. 2x+×_2 if ×=5
if the ratio of the root of ax+bx+c =0, show that (m+1)^2 ac =b^2m
By the definition, is such that 0!=1.why?
(1+cosA+IsinA)(1+cosB+isinB)/(cos@+isin@)(cos$+isin$)
hatdog
Mark
jaks
Ryan
how we can draw three triangles of distinctly different shapes. All the angles will be cutt off each triangle and placed side by side with vertices touching