<< Chapter < Page
  Physics for k-12   Page 1 / 1
Chapter >> Page >
Solving problems is an essential part of the understanding process.

Questions and their answers are presented here in the module text format as if it were an extension of the treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory. Solution presented is, therefore, treated as the part of the understanding process – not merely a Q/A session. The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put to real time situation.

Representative problems and their solutions

We discuss problems, which highlight certain aspects of the study leading to the uniform circular motion. The questions are categorized in terms of the characterizing features of the subject matter :

  • Direction of velocity
  • Direction of position vector
  • Velocity
  • Relative speed
  • Nature of UCM

Direction of velocity

Problem : A particle moves in xy-plane along a circle of radius "r". The particle moves at a constant speed in anti-clockwise direction with center of circle as the origin of the coordinate system. At a certain instant, the velocity of the particle is i – √3 j . Determine the angle that velocity makes with x-direction.

Solution : The sign of y-component of velocity is negative, whereas that of x-component of velocity is positive. It means that the particle is in the third quadrant of the circle as shown in the figure.

Top view of uniform circular motion in xy-plane

The acute angle formed by the velocity with x-axis is obtained by considering the magnitude of components (without sign) as :

tan α = v y v x = 3 1 = 3 = tan 60 0

α = 60 0

This is the required angle as measured in clockwise direction from x-axis. If the angle is measured in anti-clockwise direction from positive direction of x-axis, then

α = 360 0 60 0 = 300 0

Got questions? Get instant answers now!

Direction of position vector

Problem : A particle moves in xy-plane along a circle of radius “r”. The particle moves at a constant speed in anti-clockwise direction with center of circle as the origin of the coordinate system. At a certain instant, the velocity of the particle is i – √3 j . Determine the angle that position vector makes with x-direction.

Solution : The sign of y-component of velocity is negative, whereas that of x-component of velocity is positive. It means that the particle is in the third quadrant of the circle as shown in the figure.

Top view of uniform circular motion in xy-plane

The acute angle formed by the velocity with x-axis is obtained by considering the magnitude of components (without sign) as :

tan α = v y v x = 3 1 = 3 = tan 60 0

α = 60 0

But, we know that position vector is perpendicular to velocity vector. By geometry,

θ = 180 0 30 0 = 150 0

This is the angle as measured in clockwise direction from x-axis. If the angle is measured in anti-clockwise direction from positive direction of x-axis, then

α = 360 0 150 0 = 210 0

Note : Recall the derivation of the expression of velocity vector in the previous module. We had denoted “θ” as the angle that position vector makes with x-axis (not the velocity vector). See the figure that we had used to derive the velocity expression.

Top view of uniform circular motion in xy-plane

As a matter of fact “θ” is the angle that velocity vector makes with y-axis (not x-axis). We can determine the angle “θ” by considering the sign while evaluating tan θ,

tan θ = v x v y = 1 3 = tan 150 0

θ = 150 0

Got questions? Get instant answers now!

Velocity

Problem : A particle moves with a speed 10 m/s in xy-plane along a circle of radius 10 m in anti-clockwise direction. The particle starts moving with constant speed from position (r,0), where "r" denotes the radius of the circle. Find the velocity of the particle (in m/s), when its position makes an angle 135° with x – axis.

Solution : The velocity of the particle making an angle "θ" with x – axis is given as :

Uniform circular motion

v = v x i + v y j = v sin θ i + v cos θ j

Here,

v x = - v sin θ = - 10 sin 135 0 = - 10 x ( 1 2 ) = - 5 2 v y = v cos θ = 10 cos 135 0 = 10 x ( - 1 2 ) = - 5 2

Here, both the components are negative.

v = v x i + v y j v = - ( 5 2 i + 5 2 j ) m / s

Got questions? Get instant answers now!

Relative speed

Problem : Two particles tracing a circle of radius 10 m begin their journey simultaneously from a point on the circle in opposite directions. If their speeds are 2.0 m/s and 1.14 m/s respectively, then find the time after which they collide.

Solution : The particles approach each other with a relative speed, which is equal to the sum of their speeds.

v r e l = 2.0 + 1.14 = 3.14 m / s

For collision to take place, the particles need to cover the initial separation with the relative speed as measured above. The time for collision is, thus, obtained as :

t = 2 π r v r e l = 2 x 3.14 x 10 3.14 = 20 s

Got questions? Get instant answers now!

Nature of ucm

Problem : Two particles “A” and “B” are moving along circles of radii " r A " and " r B " respectively at constant speeds. If the particles complete one revolution in same time, then prove that speed of the particle is directly proportional to radius of the circular path.

Solution : As the time period of the UCM is same,

T = 2 π r A v A = 2 π r B v B

v A r A = v B r B

v A v B = r A r B

Hence, speed of the particle is directly proportional to the radius of the circle.

Got questions? Get instant answers now!

Problem : Two particles “A” and “B” are moving along circles of radii " r A " and " r B " respectively at constant speeds. If the particles have same acceleration, then prove that speed of the particle is directly proportional to square root of the radius of the circular path.

Solution : As the acceleration of the UCM is same,

v A 2 r A = v B 2 r B

v A 2 v B 2 = r A r B

v A v B = r A r B

Hence, speed of the particle is directly proportional to square root of the radius of the circular path.

Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask