<< Chapter < Page Chapter >> Page >

Equations of motion in horizontal direction

The force due to gravity has no component in horizontal direction. Since gravity is the only force acting on the projectile, this means that the motion in horizontal direction is not accelerated. Therefore, the motion in horizontal direction is an uniform motion. This implies that the component of velocity in x-direction is constant. As such, the position or displacement in x-direction at a given time “t” is :

x = u x t

Projectile motion

Horizontal displacement at a given time

This equation gives the value of horizontal position or displacement at any given instant.

Displacement of projectile

The displacement of projectile is obtained by vector addition of displacements in x and y direction. The magnitude of displacement of the projectile from the origin at any given instant is :

Displacement, OP = ( x 2 + y 2 )

Displacement in projectile motion

The angle that displacement vector subtends on x-axis is :

tan α = y x

Velocity of projectile

The velocity of projectile is obtained by vector addition of velocities in x and y direction. Since component velocities are mutually perpendicular to each other, we can find magnitude of velocity of the projectile at any given instant, applying Pythagoras theorem :

v = ( v x 2 + v y 2 )

Velocity of a projectile

The angle that the resultant velocity subtends on x-axis is :

tan β = v y v x

Problem : A ball is projected upwards with a velocity of 60 m/s at an angle 60° to the vertical. Find the velocity of the projectile after 1 second.

Solution : In order to find velocity of the projectile, we need to know the velocity in vertical and horizontal direction. Now, initial velocities in the two directions are (Note that the angle of projection is given in relation to vertical direction.):

u x = u sin θ = 60 sin 60 ° = 60 x 3 2 = 30 3 m / s u y = u cos θ = 60 cos 60 ° = 60 x 1 2 = 30 m / s

Now, velocity in horizontal direction is constant as there is no component of acceleration in this direction. Hence, velocity after "1" second is :

v x = u x = 30 3 m / s

On the other hand, the velocity in vertical direction is obtained, using equation of motion as :

v y = u y - g t v y = 30 - 10 x 1 v y = 20 m / s

The resultant velocity, v, is given by :

v = ( v x 2 + v y 2 ) v = { ( 30 3 ) 2 + ( 20 ) 2 } = ( 900 x 3 + 400 ) = 55.68 m / s

Got questions? Get instant answers now!

Equation of the path of projectile

Equation of projectile path is a relationship between “x” and “y”. The x and y – coordinates are given by equations,

y = u y t - 1 2 g t 2 x = u x t

Eliminating “t” from two equations, we have :

y = u y x u x - g x 2 2 u x 2

For a given initial velocity and angle of projection, the equation reduces to the form of y = A x + B x 2 , where A and B are constants. The equation of “y” in “x” is the equation of parabola. Hence, path of the projectile motion is a parabola. Also, putting expressions for initial velocity components u x = u cos θ and u y = u sin θ , we have :

y = ( u sin θ ) x u cos θ - g x 2 2 u 2 cos 2 θ y = x tan θ - g x 2 2 u 2 cos 2 θ

Some other forms of the equation of projectile are :

y = x tan θ - g x 2 sec 2 θ 2 u 2

y = x tan θ - g x 2 ( 1 + tan 2 θ ) 2 u 2


A projectile with initial velocity 2 i + j is thrown in air (neglect air resistance). The velocity of the projectile before striking the ground is (consider g = 10 m / s 2 ) :

(a) i + 2 j (b) 2 i j (c) i – 2 j (d) 2 i – 2 j

The vertical component of velocity of the projectile on return to the ground is equal in magnitude to the vertical component of velocity of projection, but opposite in direction. On the other hand, horizontal component of velocity remains unaltered. Hence, we can obtain velocity on the return to the ground by simply changing the sign of vertical component in the component expression of velocity of projection.

Projectile motion

Components of velocities

v = 2 i - j

Hence, option (b) is correct.

Got questions? Get instant answers now!

Questions & Answers

List the application of projectile
Luther Reply
How can we take advantage of our knowledge about motion?
Kenneth Reply
pls explain what is dimension of 1in length and -1 in time ,what's is there difference between them
Mercy Reply
what are scalars
Abdhool Reply
show that 1w= 10^7ergs^-1
Lawrence Reply
what's lamin's theorems and it's mathematics representative
Yusuf Reply
if the wavelength is double,what is the frequency of the wave
Ekanem Reply
What are the system of units
Jonah Reply
A stone propelled from a catapult with a speed of 50ms-1 attains a height of 100m. Calculate the time of flight, calculate the angle of projection, calculate the range attained
Samson Reply
58asagravitasnal firce
water boil at 100 and why
isaac Reply
what is upper limit of speed
Riya Reply
what temperature is 0 k
0k is the lower limit of the themordynamic scale which is equalt to -273 In celcius scale
How MKS system is the subset of SI system?
Clash Reply
which colour has the shortest wavelength in the white light spectrum
Mustapha Reply
how do we add
Jennifer Reply
if x=a-b, a=5.8cm b=3.22 cm find percentage error in x
Abhyanshu Reply
x=5.8-3.22 x=2.58

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?