<< Chapter < Page Chapter >> Page >
  • Describe a plane vector, using correct notation.
  • Perform basic vector operations (scalar multiplication, addition, subtraction).
  • Express a vector in component form.
  • Explain the formula for the magnitude of a vector.
  • Express a vector in terms of unit vectors.
  • Give two examples of vector quantities.

When describing the movement of an airplane in flight, it is important to communicate two pieces of information: the direction in which the plane is traveling and the plane’s speed. When measuring a force, such as the thrust of the plane’s engines, it is important to describe not only the strength of that force, but also the direction in which it is applied. Some quantities, such as or force, are defined in terms of both size (also called magnitude ) and direction. A quantity that has magnitude and direction is called a vector    . In this text, we denote vectors by boldface letters, such as v .


A vector is a quantity that has both magnitude and direction.

Vector representation

A vector in a plane is represented by a directed line segment (an arrow). The endpoints of the segment are called the initial point    and the terminal point    of the vector. An arrow from the initial point to the terminal point indicates the direction of the vector. The length of the line segment represents its magnitude    . We use the notation v to denote the magnitude of the vector v . A vector with an initial point and terminal point that are the same is called the zero vector    , denoted 0 . The zero vector is the only vector without a direction, and by convention can be considered to have any direction convenient to the problem at hand.

Vectors with the same magnitude and direction are called equivalent vectors. We treat equivalent vectors as equal, even if they have different initial points. Thus, if v and w are equivalent, we write

v = w .


Vectors are said to be equivalent vectors    if they have the same magnitude and direction.

The arrows in [link] (b) are equivalent. Each arrow has the same length and direction. A closely related concept is the idea of parallel vectors. Two vectors are said to be parallel if they have the same or opposite directions. We explore this idea in more detail later in the chapter. A vector is defined by its magnitude and direction, regardless of where its initial point is located.

This figure has two images. The first is labeled “a” and has a line segment representing vector v. The line segment begins at the initial point and goes to the terminal point. There is an arrowhead at the terminal point. The second image is labeled “b” and is five vectors, each labeled v sub 1, v sub 2, v sub 3, v sub 4, v sub 5. They all are pointing in the same direction and have the same length.
(a) A vector is represented by a directed line segment from its initial point to its terminal point. (b) Vectors v 1 through v 5 are equivalent.

The use of boldface, lowercase letters to name vectors is a common representation in print, but there are alternative notations. When writing the name of a vector by hand, for example, it is easier to sketch an arrow over the variable than to simulate boldface type: v . When a vector has initial point P and terminal point Q , the notation P Q is useful because it indicates the direction and location of the vector.

Sketching vectors

Sketch a vector in the plane from initial point P ( 1 , 1 ) to terminal point Q ( 8 , 5 ) .

See [link] . Because the vector goes from point P to point Q , we name it P Q .

This figure is a graph of the first quadrant. There is a line segment beginning at the ordered pair (1, 1). Also, this point is labeled “P.” The line segment ends at the ordered pair (8, 5) and is labeled “Q.” The line segment is labeled “PQ.”
The vector with initial point ( 1 , 1 ) and terminal point ( 8 , 5 ) is named P Q .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
can you provide the details of the parametric equations for the lines that defince doubly-ruled surfeces (huperbolids of one sheet and hyperbolic paraboloid). Can you explain each of the variables in the equations?
Radek Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Calculus volume 3. OpenStax CNX. Feb 05, 2016 Download for free at http://legacy.cnx.org/content/col11966/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 3' conversation and receive update notifications?