# 3.12 Trigonometric values, equations and identities

 Page 1 / 3

In this module, we discuss trigonometric values and angles. In particular, we shall learn about two very useful algorithms which help us to find (i) value of trigonometric function when angle is given and (ii) angles when value of trigonometric function is given. In addition, we shall go through various trigonometric equations and identities. We are expected to be already familiar with them. For this reason, solutions of equations and identities are presented here without deduction and are included for reference purpose.

## Values of trigonometric function

It is sufficient to know values of trigonometric functions for angles in first quarter. These angles are called acute angles (angle value less than π/2). Here, we develop algorithm, which converts angles in other quadrants in terms of acute angles. Basic idea is that angles can be expressed in terms of combination of acute angle and reference angles like 0, π/2, π and 2π. These angles demark quadrants. Using certain procedure, we can find value of trigonometric function of any angle provided we know the trigonometric value of corresponding acute angle. For the sake of convenience, we shall concentrate on acute angles π/6, π/4 and π/3, whose trigonometric function values are known to us. We follow an algorithm to determine trigonometric values as given here :

1 : Express given angle as sum or difference of acute angle and reference angles 0, π/2, π and 2π.

2 : Write trigonometric function of sum or difference as trigonometric function of acute angle. A trigonometric sum/difference combination of angles involving angles of 0, π and 2π does not change the function. However, a combination involving π/2 changes function from sine to cosine and vice-versa, tangent to cotangent and vice-versa and cosecant to secant and vice-versa.

3 : Apply sign before trigonometric function determined as above in accordance with the sign rule of trigonometric function.

$f\left(r+a\right)=\left(+\phantom{\rule{1em}{0ex}}or\phantom{\rule{1em}{0ex}}-\right)g\left(a\right)$

where “f” and “g” denote trigonometric functions, “r” denotes reference angles like 0, π/2, π and 2π and “a” denotes acute angle.

Let us consider an angle 7π/6. We are required to find sine and cotangent values of this angle. Here, we see that 7π/6 is greater than π. Hence, it is equal to π plus some acute angle, say, x.

$\pi +x=\frac{7\pi }{6}$ $⇒x=\frac{7\pi }{6}-x=\frac{\pi }{6}$ $⇒\mathrm{sin}\frac{7\pi }{6}=\mathrm{sin}\left(\pi +\frac{\pi }{6}\right)$

Since combination involves angle π, the sine of given angle retains the trigonometric function form. However, angle 7π/6 falls in third quadrant, in which sine is negative. Thus,

$⇒\mathrm{sin}\frac{7\pi }{6}=\mathrm{sin}\left(\pi +\frac{\pi }{6}\right)=-\mathrm{sin}\frac{\pi }{6}=-\frac{\sqrt{3}}{2}$

Similarly,

$⇒\mathrm{cot}\frac{7\pi }{6}=\mathrm{cot}\left(\pi +\frac{\pi }{6}\right)=\mathrm{cot}\frac{\pi }{6}=\frac{1}{\sqrt{3}}$

This method is very helpful to determine value of trigonometric function provided we know the value of trigonometric function of corresponding acute angle resulting from combination involving angles 0, π/2, π and 2π. Here, we shall work out few standard identities involving combination of angles with reference angles. We need not remember these identities. Rather, we should rely on the procedure discussed here as all of these can be derived on spot easily.

#### Questions & Answers

how can chip be made from sand
is this allso about nanoscale material
Almas
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
What is power set
Period of sin^6 3x+ cos^6 3x
Period of sin^6 3x+ cos^6 3x