<< Chapter < Page Chapter >> Page >

Using expansion along the first row to compute a 3 × 3 Determinant

Evaluate the determinant | 2 5 −1 −1 1 3 −2 3 4 | .

We have

| 2 5 −1 −1 1 3 −2 3 4 | = 2 | 1 3 3 4 | 5 | −1 3 −2 4 | 1 | −1 1 −2 3 | = 2 ( 4 9 ) 5 ( −4 + 6 ) 1 ( −3 + 2 ) = 2 ( −5 ) 5 ( 2 ) 1 ( −1 ) = −10 10 + 1 = −19.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Evaluate the determinant | 1 −2 −1 3 2 −3 1 5 4 | .

40

Got questions? Get instant answers now!

Technically, determinants are defined only in terms of arrays of real numbers. However, the determinant notation provides a useful mnemonic device for the cross product formula.

Rule: cross product calculated by a determinant

Let u = u 1 , u 2 , u 3 and v = v 1 , v 2 , v 3 be vectors. Then the cross product u × v is given by

u × v = | i j k u 1 u 2 u 3 v 1 v 2 v 3 | = | u 2 u 3 v 2 v 3 | i | u 1 u 3 v 1 v 3 | j + | u 1 u 2 v 1 v 2 | k .

Using determinant notation to find p × q

Let p = −1 , 2 , 5 and q = 4 , 0 , −3 . Find p × q .

We set up our determinant by putting the standard unit vectors across the first row, the components of u in the second row, and the components of v in the third row. Then, we have

p × q = | i j k −1 2 5 4 0 −3 | = | 2 5 0 −3 | i | −1 5 4 −3 | j + | −1 2 4 0 | k = ( −6 0 ) i ( 3 20 ) j + ( 0 8 ) k = −6 i + 17 j 8 k .

Notice that this answer confirms the calculation of the cross product in [link] .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use determinant notation to find a × b , where a = 8 , 2 , 3 and b = −1 , 0 , 4 .

8 i 35 j + 2 k

Got questions? Get instant answers now!

Using the cross product

The cross product is very useful for several types of calculations, including finding a vector orthogonal to two given vectors, computing areas of triangles and parallelograms, and even determining the volume of the three-dimensional geometric shape made of parallelograms known as a parallelepiped . The following examples illustrate these calculations.

Finding a unit vector orthogonal to two given vectors

Let a = 5 , 2 , −1 and b = 0 , −1 , 4 . Find a unit vector orthogonal to both a and b .

The cross product a × b is orthogonal to both vectors a and b . We can calculate it with a determinant:

a × b = | i j k 5 2 −1 0 −1 4 | = | 2 −1 −1 4 | i | 5 −1 0 4 | j + | 5 2 0 −1 | k = ( 8 1 ) i ( 20 0 ) j + ( −5 0 ) k = 7 i 20 j 5 k .

Normalize this vector to find a unit vector in the same direction:

a × b = ( 7 ) 2 + ( −20 ) 2 + ( −5 ) 2 = 474 .

Thus, 7 474 , −20 474 , −5 474 is a unit vector orthogonal to a and b .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find a unit vector orthogonal to both a and b , where a = 4 , 0 , 3 and b = 1 , 1 , 4 .

−3 194 , −13 194 , 4 194

Got questions? Get instant answers now!

To use the cross product for calculating areas, we state and prove the following theorem.

Area of a parallelogram

If we locate vectors u and v such that they form adjacent sides of a parallelogram, then the area of the parallelogram is given by u × v ( [link] ).

This figure is a parallelogram. One side is represented with a vector labeled “v.” The second side, the base, has the same initial point as vector v and is labeled “u.” The angle between u and v is theta. Also, a perpendicular line segment is drawn from the terminal point of v to vector u. It is labeled “|v|sin(theta).”
The parallelogram with adjacent sides u and v has base u and height v sin θ .

Proof

We show that the magnitude of the cross product is equal to the base times height of the parallelogram.

Area of a parallelogram = base × height = u ( v sin θ ) = u × v

Finding the area of a triangle

Let P = ( 1 , 0 , 0 ) , Q = ( 0 , 1 , 0 ) , and R = ( 0 , 0 , 1 ) be the vertices of a triangle ( [link] ). Find its area.

This figure is the 3-dimensional coordinate system. It has a triangle drawn in the first octant. The vertices of the triangle are points P(1, 0, 0); Q(0, 1, 0); and R(0, 0, 1).
Finding the area of a triangle by using the cross product.

We have P Q = 0 1 , 1 0 , 0 0 = −1 , 1 , 0 and P R = 0 1 , 0 0 , 1 0 = −1 , 0 , 1 . The area of the parallelogram with adjacent sides P Q and P R is given by P Q × P R :

P Q × P R = | i j k −1 1 0 −1 0 1 | = ( 1 0 ) i ( −1 0 ) j + ( 0 ( −1 ) ) k = i + j + k P Q × P R = 1 , 1 , 1 = 1 2 + 1 2 + 1 2 = 3 .

The area of Δ P Q R is half the area of the parallelogram, or 3 / 2 .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the area of the parallelogram P Q R S with vertices P ( 1 , 1 , 0 ) , Q ( 7 , 1 , 0 ) , R ( 9 , 4 , 2 ) , and S ( 3 , 4 , 2 ) .

6 13

Got questions? Get instant answers now!

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
can you provide the details of the parametric equations for the lines that defince doubly-ruled surfeces (huperbolids of one sheet and hyperbolic paraboloid). Can you explain each of the variables in the equations?
Radek Reply
Practice Key Terms 6

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Calculus volume 3. OpenStax CNX. Feb 05, 2016 Download for free at http://legacy.cnx.org/content/col11966/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 3' conversation and receive update notifications?

Ask