4.7 Exponential and logarithmic models  (Page 5/16)

 Page 5 / 16

A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room. One hour later, the temperature has risen to 45 degrees. How long will it take for the temperature to rise to 60 degrees?

6.026 hours

Using logistic growth models

Exponential growth cannot continue forever. Exponential models, while they may be useful in the short term, tend to fall apart the longer they continue. Consider an aspiring writer who writes a single line on day one and plans to double the number of lines she writes each day for a month. By the end of the month, she must write over 17 billion lines, or one-half-billion pages. It is impractical, if not impossible, for anyone to write that much in such a short period of time. Eventually, an exponential model must begin to approach some limiting value, and then the growth is forced to slow. For this reason, it is often better to use a model with an upper bound instead of an exponential growth    model, though the exponential growth model is still useful over a short term, before approaching the limiting value.

The logistic growth model    is approximately exponential at first, but it has a reduced rate of growth as the output approaches the model’s upper bound, called the carrying capacity    . For constants $\text{a, b,}$ and $\text{c,}$ the logistic growth of a population over time $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ is represented by the model

$f\left(x\right)=\frac{c}{1+a{e}^{-bx}}$

The graph in [link] shows how the growth rate changes over time. The graph increases from left to right, but the growth rate only increases until it reaches its point of maximum growth rate, at which point the rate of increase decreases.

Logistic growth

The logistic growth model is

$f\left(x\right)=\frac{c}{1+a{e}^{-bx}}$

where

• $\frac{c}{1+a}\text{\hspace{0.17em}}$ is the initial value
• $c\text{\hspace{0.17em}}$ is the carrying capacity , or limiting value
• $b\text{\hspace{0.17em}}$ is a constant determined by the rate of growth.

Using the logistic-growth model

An influenza epidemic spreads through a population rapidly, at a rate that depends on two factors: The more people who have the flu, the more rapidly it spreads, and also the more uninfected people there are, the more rapidly it spreads. These two factors make the logistic model a good one to study the spread of communicable diseases. And, clearly, there is a maximum value for the number of people infected: the entire population.

For example, at time $\text{\hspace{0.17em}}t=0\text{\hspace{0.17em}}$ there is one person in a community of 1,000 people who has the flu. So, in that community, at most 1,000 people can have the flu. Researchers find that for this particular strain of the flu, the logistic growth constant is $\text{\hspace{0.17em}}b=0.6030.\text{\hspace{0.17em}}$ Estimate the number of people in this community who will have had this flu after ten days. Predict how many people in this community will have had this flu after a long period of time has passed.

We substitute the given data into the logistic growth model

$f\left(x\right)=\frac{c}{1+a{e}^{-bx}}$

Because at most 1,000 people, the entire population of the community, can get the flu, we know the limiting value is $\text{\hspace{0.17em}}c=1000.\text{\hspace{0.17em}}$ To find $\text{\hspace{0.17em}}a,$ we use the formula that the number of cases at time $\text{\hspace{0.17em}}t=0\text{\hspace{0.17em}}$ is $\text{\hspace{0.17em}}\frac{c}{1+a}=1,$ from which it follows that $\text{\hspace{0.17em}}a=999.\text{}$ This model predicts that, after ten days, the number of people who have had the flu is $\text{\hspace{0.17em}}f\left(x\right)=\frac{1000}{1+999{e}^{-0.6030x}}\approx 293.8.\text{\hspace{0.17em}}$ Because the actual number must be a whole number (a person has either had the flu or not) we round to 294. In the long term, the number of people who will contract the flu is the limiting value, $\text{\hspace{0.17em}}c=1000.$

what is set?
a colony of bacteria is growing exponentially doubling in size every 100 minutes. how much minutes will it take for the colony of bacteria to triple in size
I got 300 minutes. is it right?
Patience
no. should be about 150 minutes.
Jason
It should be 158.5 minutes.
Mr
ok, thanks
Patience
100•3=300 300=50•2^x 6=2^x x=log_2(6) =2.5849625 so, 300=50•2^2.5849625 and, so, the # of bacteria will double every (100•2.5849625) = 258.49625 minutes
Thomas
what is the importance knowing the graph of circular functions?
can get some help basic precalculus
What do you need help with?
Andrew
how to convert general to standard form with not perfect trinomial
can get some help inverse function
ismail
Rectangle coordinate
how to find for x
it depends on the equation
Robert
yeah, it does. why do we attempt to gain all of them one side or the other?
Melissa
whats a domain
The domain of a function is the set of all input on which the function is defined. For example all real numbers are the Domain of any Polynomial function.
Spiro
Spiro; thanks for putting it out there like that, 😁
Melissa
foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
difference between calculus and pre calculus?
give me an example of a problem so that I can practice answering
x³+y³+z³=42
Robert
dont forget the cube in each variable ;)
Robert
of she solves that, well ... then she has a lot of computational force under her command ....
Walter
what is a function?
I want to learn about the law of exponent
explain this
what is functions?
A mathematical relation such that every input has only one out.
Spiro
yes..it is a relationo of orders pairs of sets one or more input that leads to a exactly one output.
Mubita
Is a rule that assigns to each element X in a set A exactly one element, called F(x), in a set B.
RichieRich