<< Chapter < Page Chapter >> Page >
More detailed and accessible derivations of the equations in section 2 of the paper "Michelle Trusses and Lines of Principal Action" are provided here. See Stress and Measure Theory modules for background material.

Michelle trusses

Unidirectional curve stress

Let C be a simple curve in R d . In other words C is the image of a map r C 1 , 1 ( [ 0 , 1 ] , R d ) such that r ˙ ( t ) 0 for each t [ 0 , 1 ] and r is injective. We will also require without loss of generality that r ( t ) trace out the curve C at a constant speed, making | r ˙ ( t ) | constant on [ 0 , 1 ] . Therefore | r ˙ ( t ) | = 0 1 | r ˙ ( s ) | d s 1 - 0 = H 1 ( C ) for each t [ 0 , 1 ] and the unit tangent vector to C at time t will be

τ ( t ) = r ˙ ( t ) | r ˙ ( t ) | = r ˙ ( t ) H 1 ( C ) .

The curvature κ at time t is then given by

κ ( t ) = d τ / d t | d r / d t | = r ¨ ( t ) / H 1 ( C ) H 1 ( C ) = r ¨ ( t ) ( H 1 ( C ) ) 2 .

We now define a measure σ C that is proportional to the stress along the curve C .

σ C : = ( τ τ ) H 1 C = 1 H 1 ( C ) 2 ( r ˙ r ˙ ) H 1 C

Thus σ C is a rank 1 symmetric matrix measure.

We will now treat σ C as the functional on C c ( R d , R d × d ) that corresponds to the measure σ C . For any ξ C c ( R d , R d × d ) ,

σ C [ ξ ] = ξ ; τ τ d H 1 C = 1 H 1 ( C ) 2 C ξ ( r ) ; r ˙ r ˙ d | r | = 1 H 1 ( C ) 0 1 ξ ( r ( t ) ) ; r ˙ ( t ) r ˙ ( t ) d t .

To find the divergence of the measure σ C , we let an arbitrary vector-valued function u C c 1 ( R d , R d × d ) be given and we evaluate the functional - div σ C [ u ] .

( - div σ C ) [ u ] = σ C [ u ] = R d u d σ C = 1 H 1 ( C ) 0 1 u ( r ( t ) ) ; r ˙ ( t ) r ˙ ( t ) d t

Using the definitions of the inner product and the tensor product, we can convert the matrix product u ( r ( t ) ) ; r ˙ ( t ) r ˙ ( t ) into a vector product:

u ( r ( t ) ) ; r ˙ ( t ) r ˙ ( t ) = u ( r ( t ) ) ; r ˙ ( t ) r ˙ ( t ) T = t r [ u ( r ( t ) ) ( r ˙ ( t ) r ˙ ( t ) T ) T ] = t r [ u ( r ( t ) ) r ˙ ( t ) r ˙ ( t ) T ] = u ( r ( t ) ) r ˙ ( t ) ; r ˙ ( t ) = d d t [ u ( r ( t ) ) ] ; r ˙ ( t ) .

Therefore

( - div σ C ) [ u ] = 1 H 1 ( C ) 0 1 d d t [ u ( r ( t ) ) ] ; r ˙ ( t ) d t = u ( r ( t ) ) ; r ˙ ( t ) H 1 ( C ) t = 0 1 - 1 H 1 ( C ) 0 1 u ( r ( t ) ) ; r ¨ ( t ) d t = u ( r ( 1 ) ) ; r ˙ ( 1 ) H 1 ( C ) - u ( r ( 0 ) ) ; r ˙ ( 0 ) H 1 ( C ) - 1 H 1 ( C ) 2 C u ( r ) ; r ¨ d r = R d u ; τ d δ B - R d u ; τ d δ A - R d u ; κ d H 1 C = τ δ B [ u ] - τ δ A [ u ] - κ H 1 C [ u ] = ( τ δ B - τ δ A - κ H 1 C ) [ u ] ,

where A = r ( 0 ) and B = r ( 1 ) . Since this equation holds for any u C c 1 ( R d , R d × d ) , we say that the measure - div σ C is given by

- div σ C = τ δ B - τ δ A - κ H 1 C .

When the curve C is just equal to the line segment [ A , B ] , τ = B - A | B - A | and κ = 0 . Therefore our equation becomes

- div σ [ A , B ] = ( δ B - δ A ) B - A | B - A | .

Stress in a truss

The stress in a beam is given by 1 2 λ σ [ A , B ] for some λ . A finite collection of such beams is a truss . Therefore the stress in a truss that consists of l nodes at { A 1 , A 2 , , A l } is given by

σ = m , n = 1 l - λ m , n σ [ A m , A n ] ,

where we require that λ m , m = 0 for each m .

Recall that the stress σ of a structure that is in equilibrium must satisfy the restrictions - div σ T = F and σ = σ T . It is easy to see that σ will be symmetric by definition. Therefore, if our truss is in equilibrium, there must be a force distribution F such that

F = - div σ = - div m , n = 1 l - λ m , n σ [ A m , A n ] .

Since the operator - div is linear, we get

F = m , n = 1 l λ m , n div σ [ A m , A n ] = m , n = 1 l λ m , n ( δ A m - δ A n ) A m - A n | A m - A n | ,

which will be our new requirement for a truss to be balanced [link] .

Cost of a truss

If we are given a force distribution F , a set of points A = { A 1 , A 2 , , A l } , and a set of weights Λ = { λ m , n : m , n = 1 , l } such that F = m , n = 1 l λ m , n ( δ A m - δ A n ) A m - A n | A m - A n | , then the cost of the truss structure will be the "total mass" of the structure, which is given by R d | σ | .

R d | σ | = | σ | ( R d ) = | σ | 1 m < n l [ A m , A n ] = 1 m < n l | σ | ( [ A m , A n ] ) = 1 m < n l p , q = 1 l λ p , q σ [ A p , A q ] ( [ A m , A n ] ) = 1 m < n l λ m , n σ [ A m , A n ] + λ n , m σ [ A n , A m ] ( [ A m , A n ] ) = 2 1 m < n l λ m , n A m - A n | A m - A n | A m - A n | A m - A n | H 1 [ A m , A n ] ( [ A m , A n ] ) = m , n = 1 l | λ m , n | | ( A m - A n ) ( A m - A n ) | | A m - A n | H 1 [ A m , A n ] ( [ A m , A n ] ) = m , n = 1 l | λ m , n | | A m - A n |

Cost minimization

Given a truss T , which consists of a set of points A = { A 1 , A 2 , , A l } and a set of weights Λ = { λ m , n : m , n = 1 , l } , and given a force distribution F of finite support, we define a set Σ F T ( Ω ¯ ) of all admissible stress measures for the truss T.

Σ F T ( Ω ¯ ) = σ M ( Ω ¯ , S d × d ) : - div σ = F , and σ = m , n = 1 l - λ m , n σ [ A m , A n ]

The requirement σ = m , n = 1 l - λ m , n σ [ A m , A n ] is equivalent to the restriction that σ be rank 1 and supported on a finite collection of simple curves.

We also define the set

Σ F ( Ω ¯ ) = σ M ( Ω ¯ , S d × d ) : - div σ = F ,

of all stress measures for structures that balance the force distribution F . The stresses in this set do not necessarily correspond to trusses, since we have dropped the requirement that the stress be rank 1 and concentrated on curves in R d . In fact, the stress measures in Σ F ( Ω ¯ ) may be spread out over a region of R d . Also, we may allow the given force F to be diffuse.

Our original optimization problem was to find a truss T 0 such that the cost of T 0 is equal to inf T inf | σ | : σ Σ F T ( Ω ¯ for a given force distribution F of finite support. This is equivalent to finding a stress measure σ 0 T Σ F T ( Ω ¯ ) such that

| σ 0 | = inf | σ | : σ T Σ F T ( Ω ¯ ) .

Such a σ 0 , however, does not always exist [link] .

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Michell trusses study, rice u. nsf vigre group, summer 2013. OpenStax CNX. Sep 02, 2013 Download for free at http://cnx.org/content/col11567/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Michell trusses study, rice u. nsf vigre group, summer 2013' conversation and receive update notifications?

Ask