<< Chapter < Page Chapter >> Page >

The visible light seen by humans as white light actually exists in a rainbow of colors. Certain objects, such as a prism or a drop of water, disperse white light to reveal the colors to the human eye. The visible light portion of the electromagnetic spectrum shows the rainbow of colors, with violet and blue having shorter wavelengths, and therefore higher energy. At the other end of the spectrum toward red, the wavelengths are longer and have lower energy ( [link] ).

The illustration shows the colors of visible light. In order of decreasing wavelength, these are red, orange, yellow, green, blue, indigo, and violet.
The colors of visible light do not carry the same amount of energy. Violet has the shortest wavelength and therefore carries the most energy, whereas red has the longest wavelength and carries the least amount of energy. (credit: modification of work by NASA)

Understanding pigments

Different kinds of pigments exist, and each has evolved to absorb only certain wavelengths (colors) of visible light. Pigments reflect or transmit the wavelengths they cannot absorb, making them appear in the corresponding color.

Chlorophylls and carotenoids are the two major classes of photosynthetic pigments found in plants and algae; each class has multiple types of pigment molecules. There are five major chlorophylls: a , b , c and d and a related molecule found in bacteria called bacteriochlorophyll . Chlorophyll a and chlorophyll b    are found in higher plant chloroplasts and will be the focus of the following discussion.

With dozens of different forms, carotenoids are a much larger group of pigments. The carotenoids found in fruit—such as the red of tomato (lycopene), the yellow of corn seeds (zeaxanthin), or the orange of an orange peel (β-carotene)—are used as advertisements to attract seed dispersers. In photosynthesis, carotenoids function as photosynthetic pigments that are very efficient molecules for the disposal of excess energy. When a leaf is exposed to full sun, the light-dependent reactions are required to process an enormous amount of energy; if that energy is not handled properly, it can do significant damage. Therefore, many carotenoids reside in the thylakoid membrane, absorb excess energy, and safely dissipate that energy as heat.

Each type of pigment can be identified by the specific pattern of wavelengths it absorbs from visible light, which is the absorption spectrum    . The graph in [link] shows the absorption spectra for chlorophyll a , chlorophyll b , and a type of carotenoid pigment called β-carotene (which absorbs blue and green light). Notice how each pigment has a distinct set of peaks and troughs, revealing a highly specific pattern of absorption. Chlorophyll a absorbs wavelengths from either end of the visible spectrum (blue and red), but not green. Because green is reflected or transmitted, chlorophyll appears green. Carotenoids absorb in the short-wavelength blue region, and reflect the longer yellow, red, and orange wavelengths.

Chlorophyll a and chlorophyll b are made up of a long hydrocarbon chain attached to a large, complex ring made up of nitrogen and carbon. Magnesium is associated with the center of the ring. Chlorophyll b differs from chlorophyll a in that it has a CHO group instead of a CH3 group associated with one part of the ring. Beta-carotene is a branched hydrocarbon with a six-membered carbon ring at each end. Each chart shows the absorbance spectra for chlorophyll a, chlorophyll b, and β-carotene. The three pigments absorb blue-green and orange-red wavelengths of light but have slightly different spectra.
(a) Chlorophyll a , (b) chlorophyll b , and (c) β -carotene are hydrophobic organic pigments found in the thylakoid membrane. Chlorophyll a and b , which are identical except for the part indicated in the red box, are responsible for the green color of leaves. β -carotene is responsible for the orange color in carrots. Each pigment has (d) a unique absorbance spectrum.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ucd bis2a intro to biology v1.2. OpenStax CNX. Sep 22, 2015 Download for free at https://legacy.cnx.org/content/col11890/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ucd bis2a intro to biology v1.2' conversation and receive update notifications?

Ask