<< Chapter < Page Chapter >> Page >

The data lines (data bus):

  • Provide a path for moving, data between system modules. These lines, collectively, are called the data bus.
  • The width of the data bus: The data bus may consist of from 32 to hundreds of separate lines, the number of lines being referred to as the width of the data bus. Because each line can carry only 1 bit at a time, the number of lines deter­mines how many bits can be transferred at a lime. The width of the data bus is a key factor in determining overall system performance. For example, if the data bus is 8 bits wide and each instruction is 16 bits long, then the processor must access the memory module twice during each instruction cycle.

The address lines ( address bus):

  • Address lines are used to designate the source or destination of the data on the data bus. For example, if the processor wishes to read a word (8, 16. or 32 bits) of data from memory, it puts the address of the desired word on the address lines.
  • The width of the address bus: determines the maximum possible memory capacity of the system. Furthermore, the address lines are generally also used to address I/O ports.

The control lines (control bus):

  • Control bus are used to control the access to and the use of the data and address lines. Because the data and address lines are shared by all components, there must be a means of controlling their use. Control signals transmit both com­mand and liming information between system modules. Timing signals indicate the validity of data and address information.
  • Command signals specify operations to be performed. Typical control lines include the following:
    • Memory write: Causes data on the bus to be written into the addressed location.
    • Memory read: Causes data from the addressed location to be placed on the bus.
    • I/O write: Causes data on the bus to be output to the addressed I/O port.
    • I/O read: Causes data from the addressed I/O port to be placed on the bus.
    • Transfer ACK: Indicates that data have been accepted from or placed on the bus.
    • Bus request: Indicates that a module needs to gain control of the bus.
    • Bus grant: Indicates that a requesting module has been granted control of the bus.
    • Interrupt request: Indicates that an interrupt is pending.
    • Interrupt ACK: Acknowledges that the pending interrupt has been recognized.
    • Clock: Used to synchronize operations.
    • Reset: Initializes all modules.

Figure 12 Bus Interconnection Scheme

Multiple-bus hierarchies

If a great number of devices are connected to the bus, performance will suffer. There are two main causes:

  • In general, the more devices attached to the bus, the greater the bus length and hence the greater the propagation delay. This delay determines the time it takes for devices to coordinate the use of the bus. When control of the bus passes from one device to another frequently, these propagation delays can noticeably affect performance.
  • The bus may become a bottleneck as the aggregate data transfer demand approaches the capacity of the bus. This problem can be countered to some extent by increasing the data rate that the bus can carry and by using wider buses (e.g., increasing the data bus from 32 to 64 bit). However, because the data rates generated by attached devices (e.g.. graphics and video controllers, network interfaces) are growing rapidly, this is a race that a single bus is ulti­mately destined to lose.

Accordingly, most computer systems use multiple buses, generally laid out in a hierarchy. A typical traditional structure is shown in Figure 13. There is a local bus that connects the processor to a cache memory and that may support one or more local devices. The cache memory controller connects the cache not only to this local bus, but to a system bus to which are attached all of the main memory mod­ules.

It is possible to connected I/O controllers directly onto the system bus. A more efficient solution is to make use of one or more expansion buses for this purpose. An expansion bus interface buffers data transfers between the system bus and the I/O controllers on the expansion bus. This arrangement allows the system to sup­port a wide variety of I/O devices and at the same time insulate memory-to-processor traffic from I/O traffic.

Traditional (ISA) (with cache):

Figure 13 Traditional bus architecture

Elements of bus design

Type:

Dedicated

Multiplexed

Method of arbitration:

Centralized

Distributed

Timing:

Synchronous

Asynchronous

Bus width:

Address

Data

Data transfer type:

Read

Write

Read-modify-write

Read-after-write

Block

Questions & Answers

show that the set of all natural number form semi group under the composition of addition
Nikhil Reply
explain and give four Example hyperbolic function
Lukman Reply
_3_2_1
felecia
⅗ ⅔½
felecia
_½+⅔-¾
felecia
The denominator of a certain fraction is 9 more than the numerator. If 6 is added to both terms of the fraction, the value of the fraction becomes 2/3. Find the original fraction. 2. The sum of the least and greatest of 3 consecutive integers is 60. What are the valu
SABAL Reply
1. x + 6 2 -------------- = _ x + 9 + 6 3 x + 6 3 ----------- x -- (cross multiply) x + 15 2 3(x + 6) = 2(x + 15) 3x + 18 = 2x + 30 (-2x from both) x + 18 = 30 (-18 from both) x = 12 Test: 12 + 6 18 2 -------------- = --- = --- 12 + 9 + 6 27 3
Pawel
2. (x) + (x + 2) = 60 2x + 2 = 60 2x = 58 x = 29 29, 30, & 31
Pawel
ok
Ifeanyi
on number 2 question How did you got 2x +2
Ifeanyi
combine like terms. x + x + 2 is same as 2x + 2
Pawel
x*x=2
felecia
2+2x=
felecia
Mark and Don are planning to sell each of their marble collections at a garage sale. If Don has 1 more than 3 times the number of marbles Mark has, how many does each boy have to sell if the total number of marbles is 113?
mariel Reply
Mark = x,. Don = 3x + 1 x + 3x + 1 = 113 4x = 112, x = 28 Mark = 28, Don = 85, 28 + 85 = 113
Pawel
how do I set up the problem?
Harshika Reply
what is a solution set?
Harshika
find the subring of gaussian integers?
Rofiqul
hello, I am happy to help!
Shirley Reply
please can go further on polynomials quadratic
Abdullahi
hi mam
Mark
I need quadratic equation link to Alpa Beta
Abdullahi Reply
find the value of 2x=32
Felix Reply
divide by 2 on each side of the equal sign to solve for x
corri
X=16
Michael
Want to review on complex number 1.What are complex number 2.How to solve complex number problems.
Beyan
yes i wantt to review
Mark
use the y -intercept and slope to sketch the graph of the equation y=6x
Only Reply
how do we prove the quadratic formular
Seidu Reply
please help me prove quadratic formula
Darius
hello, if you have a question about Algebra 2. I may be able to help. I am an Algebra 2 Teacher
Shirley Reply
thank you help me with how to prove the quadratic equation
Seidu
may God blessed u for that. Please I want u to help me in sets.
Opoku
what is math number
Tric Reply
4
Trista
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Sidiki Reply
can you teacch how to solve that🙏
Mark
Solve for the first variable in one of the equations, then substitute the result into the other equation. Point For: (6111,4111,−411)(6111,4111,-411) Equation Form: x=6111,y=4111,z=−411x=6111,y=4111,z=-411
Brenna
(61/11,41/11,−4/11)
Brenna
x=61/11 y=41/11 z=−4/11 x=61/11 y=41/11 z=-4/11
Brenna
Need help solving this problem (2/7)^-2
Simone Reply
x+2y-z=7
Sidiki
what is the coefficient of -4×
Mehri Reply
-1
Shedrak
A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place.
Kimberly Reply
Jeannette has $5 and $10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
August Reply
What is the expressiin for seven less than four times the number of nickels
Leonardo Reply
How do i figure this problem out.
how do you translate this in Algebraic Expressions
linda Reply
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
When we have data register and address registers in user mode (visible registers) then why we need MAR and MBR
Hassan Reply
with the given example MOV BX,AX describe the sequence that will be followed using instruction state diagram
Gireesh Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play




Source:  OpenStax, Computer architecture. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10761/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Computer architecture' conversation and receive update notifications?

Ask