<< Chapter < Page Chapter >> Page >

x = 2 π - θ = 2 π - π 3 = 5 π 3

Problem : Find angles in [0,2π], if

cot x = 1 3

Solution : Considering only the magnitude of numerical value, we have :

cot θ = 1 3 = cot π 3

Thus, required acute angle is π/3. Now, cotangent function is positive in first and third quadrants. Looking at the value diagram, the angle in third quadrant is :

x = π + θ = π + π 3 = 4 π 3

Hence angles are π/3 and 4π/3.

Negative angles

When we consider angle as a real number entity, we need to express angles as negative angles as well. The corresponding negative angle (y) is obtained as :

y = x - 2 π

Thus, negative angles corresponding to 4π/3 and 5π/3 are :

y = 4 π 3 - 2 π = - 2 π 3 y = 5 π 3 - 2 π = - π 3

We can also find negative angle values using a separate negative value diagram (see figure). We draw negative value diagram by demarking quadrants with corresponding angles and writing angle values for negative values. We deduct “2π” from the relation for positive value diagram.

Trigonometric value diagram

Trigonometric value diagram for negative angles

Let us consider sinx = -√3/2 again. The acute angle in first quadrant is π/3. Sine is negative in third and fourth quadrants. The angles in these quadrants are :

y = - π + θ = - π + π 3 = - 2 π 3 y = - θ = - π 3

Trigonometric equations

Zeroes of sine and cosine functions

Trigonometric equations are formed by equating trigonometric functions to zero. The solutions of these equations are :

1 : sin x = 0 x = n π ; n Z

2 : cos x = 0 x = 2 n + 1 π 2 ; n Z

Definition of other trigonometric functions

We define other trigonometric functions in the light of zeroes of sine and cosine as listed above :

tan x = sin x cos x ; x 2 n + 1 π 2 ; n Z cot x = cos x sin x ; x n π ; n Z cosec x = 1 sin x ; x n π ; n Z sec x = 1 cos x ; x 2 n + 1 π 2 ; n Z

Trigonometric equations

Trigonometric function can be used to any other values as well. Solutions of such equations are given here without deduction for reference purpose. Solutions of three equations involving sine, cosine and tangent functions are listed here :

1. Sine equation

sin x = a = sin y

x = n π + - 1 n y ; n Z

2. Cosine equation

cos x = a = cos y

x = 2 n π ± y ; n Z

3. Tangent equation

tan x = a = tan y

x = n π + y ; n Z

In order to understand the working with trigonometric equation, let us consider an equation :

sin x = - 3 2

As worked out earlier, -√3/2 is sine value of two angles in the interval [0, π]. Important question here is to know which angle should be used in the solution set. Here,

sin 4 π 3 = sin 5 π 3 = - 3 2

We can write general solution using either of two values.

x = n π + - 1 n 4 π 3 ; n Z x = n π + - 1 n 5 π 3 ; n Z

The solution sets appear to be different, but are same on expansion. Conventionally, however, we use the smaller of two angles which lie in the interval [0, π]. In order to check that two series are indeed same, let us expand series from n=-4 to n=4,

For x = n π + - 1 n 4 π 3 ; n Z

- 4 π + 4 π 3 = - 8 π 3 , - 3 π - 4 π 3 = - 13 π 3 , - 2 π + 4 π 3 = - 2 π 3 , - π - 4 π 3 = - 7 π 3 ,

0 + 4 π / 3 = 4 π 3 , π - 4 π 3 = - π 3 , 2 π + 4 π 3 = 10 π 3 , 3 π - 4 π 3 = 5 π 3 , 4 π + 4 π 3 = 16 π 3

Arranging in increasing order :

- 13 π 3 , - 8 π 3 , - 7 π 3 , - 2 π 3 , - π 3 , 4 π 3 , 5 π 3 , 10 π 3 , 16 π 3

For x = n π + - 1 n 5 π 3 ; n Z

- 4 π + 5 π 3 = - 7 π 3 , - 3 π - 5 π 3 = - 14 π 3 , - 2 π + 5 π 3 = - π 3 , - π - 5 π 3 = - 8 π 3 ,

0 + 5 π 3 = 5 π 3 , π - 5 π 3 = - 2 π 3 , 2 π + 5 π 3 = 11 π 3 , 3 π - 5 π 3 = 4 π 3 , 4 π + 5 π 3 = 17 π 3

Arranging in increasing order :

- 14 π 3 , - 8 π 3 , - 7 π 3 , - 2 π 3 , - π 3 , 4 π 3 , 5 π 3 , 11 π 3 , 17 π 3

We see that there are common terms. There are, however, certain terms which do not appear in other series. We can though find those missing terms by evaluating some more values. For example, if we put n = 6 in the second series, then we get the missing term -13π/3. Also, putting n=5,7, we get 10π/3 and 16π/3. Thus, all missing terms in second series are obtained. Similarly, we can compute few more values in first series to find missing terms. We, therefore, conclude that both these series are equal.

Problem : Find solution of equation :

2 cos 2 x + 3 sin x = 0

Solution : Our objective here is to covert equation to linear form. Here, we can not convert sine term to cosine term, but we can convert cos 2 x in terms of sin 2 x .

2 1 - sin 2 x + 3 sin x = 0 2 - 2 sin 2 x + 3 sin x = 0 2 sin 2 x 3 sin x 2 = 0

It is a quadratic equation in sinx. Factoring, we have :

2 sin 2 x + sin x 4 sin x 2 = 0 sin x 2 sin x + 1 2 2 sin x + 1 = 0 2 sin x + 1 sin x 2 = 0

Either, sinx=-1/2 or sinx = 2. But sinx can not be equal to 2. hence,

sin x = - 1 2 = sin π + π 6 = sin 7 π 6 x = n π + - 1 n 7 π 6 ; n Z

Note : We shall not work with any other examples here as purpose of this module is only to introduce general concepts of angles, identities and equations. These topics are part of separate detailed study.

Trigonometric identities

Reciprocal identities

Reciprocals are defined for values of x for which trigonometric function in the denominator is not zero.

sin x = 1 cosec x ; cos x = 1 sec x ; tan x = 1 cot x ; cosec x = 1 sin x ; sec x = 1 cos x ; cot x = 1 tan x

Negative angle identities

cos - x = cos x ; sin - x = - sin x ; tan - x = - tan x

Pythagorean identities

cos 2 x + sin 2 x = 1 ; 1 + tan 2 x = sec 2 x ; 1 + cot 2 x = cosec 2 x

Sum/difference identities

sin x ± y = sin x cos y ± sin y cos x cos x ± y = cos x cos y sin x sin y tan x ± y = tan s x ± tan y / 1 tan x tan y ; x,y and (x+y) are not odd multiple of π/2 cot x ± y = cot x cot y 1 / cot y ± cot x ; x,y and (x+y) are not odd multiple of π/2

Double angle identities

sin 2 x = 2 sin x cos x = 2 tan x 1 + tan 2 x cos 2 x = cos 2 x - sin 2 x = 2 cos 2 x - 1 = 1 - 2 sin 2 x = 1 - tan 2 x 1 + tan 2 x tan 2 x = 2 tan x 1 - tan 2 x cot 2 x = cot 2 x - 1 2 cot x

Triple angle identities

sin 3 x = 3 sin x 4 sin 3 x cos 3 x = 4 cos 3 x 3 cos x tan 3 x = 3 tan x tan 3 x 1 - 3 tan 2 x cot 3 x = 3 cot x cot 3 x 1 - 3 cot 2 x

Power reduction identities

sin 2 x = 1 - cos 2 x 2 cos 2 x = 1 + cos 2 x 2 sin 3 x = 3 sin x sin 3 x 4 cos 3 x = cos 3 x + 3 cos x 4

Product to sum identities

2 sin x cos y = sin x + y + sin x - y 2 cos x sin y = sin x + y - sin x - y 2 cos x cos y = cos x + y + cos x - y 2 sin x sin y = - cos x + y + cos x - y = cos x - y - cos x + y

Sum to product identities

sin x + sin y = 2 sin x + y 2 cos x - y 2 sin x - sin y = 2 cos x + y 2 sin x - y 2 cos x + cos y = 2 cos x + y 2 cos x - y 2 cos x - cos y = - 2 sin x + y 2 sin x - y 2 = 2 sin x + y 2 sin y - x 2

Half angle identities

sin x 2 = ± { 1 - cos x 2 } cos x 2 = ± { 1 + cos x 2 } tan x 2 = cosec x cot x = ± { 1 cos x 1 + cos x } = sin x 1 + cos x = 1 cos x sin x cot x 2 = cosec x + cot x = ± { 1 + cos x 1 cos x } = sin x 1 cos x = 1 + cos x sin x

Questions & Answers

what are the money value
Wisdom Reply
Nothing more than a purchase power, in other words, $100 now, must have the same value after 1 year.
Carlos
what is Monopoly
Rebecca Reply
what is money
Lawal Reply
It can be define as a big transaction that can control any business for one place to another base.
Akinlo
money is recognisable note to accept both parties selling and buying
Hassan
i don still understan
Rene
hey
Abdul
hi
Rene
money is anything generally accepted as a medium of exchange
Awwal
Money is anything generally accepted as a medium of exchange and for the settlement of goods and services .
Korda
hi good ppl, pls help out
Tumi
discuss human and natural resources as develop strategies ro improving living condition of citizens in developing countries.
Tumi
I don't understand the question.
Naomi
it's a form of currency used for 2 or more individuals or parties in order to reach their amicable personal or business attainment. one must understand that money itself can manifest in multiple fashions for which the individuals or parties adheres.
are u trying to say we shld discuss ways in which human natural resources help in improving living condition of citizens in developing countries?
Naomi
money is a legal thunder generally accepted as a medium of exchange for the payment of debt ,goods and services
Naomi
money is a way of payment.
Carlos
money is any thing that is generally accepted as a medium of exchange good for good and settlement of debt and means of payment
Yillah
money is nothing but a object which is used for exchange of goods and services.
Harshita
money is anything that is generally accepted as payment of goods and services and settlement of debt
Rebecca
what is demand
Melissa Reply
demand is where the customer is willing and able to buy goods and services during a given period of time
idk
demand is the ability and willingness of an individual to buy goods and services at a given price in a particular period of time
Alpha
demand is the ability to buy a specific quantities of goods and services at a given price and at a specific period of time
rosemary
what are the rules of demand
rosemary
Rosemary Nsebon, Do you mean laws of demand?
Alpha
what are the rules of demand
Rene
the rule of demand is the higher the price the lower the quantity demanded and the lower the price the higher the quantity demanded
mbi
thank
Rene
what is unemployment
Rebecca
unemployment is a scenario or a phenomenon in an economy whereby people are willing are able to work but cannot a job
mbi
Suppose you have a team of two workers: one is a baker and one is a chef. Explain why the kitchen can produce more meals in a given period of time if each worker specializes in what they do best than if each worker tries to do everything from appetizer to dessert. please I need a urgent answer
Oladosu Reply
Enables individuals and countries to consume a variety of goods and services
Iddrisu
what is the meaning of competency
Oladosu Reply
competency is an ability and courage to do something perfectly
Abdullahi
ability to perform some task
Segun
rival
Ray
thanks 🙏 it is also the same with the core competency
Oladosu
A sufficient supply
Ebenezer
Ebenezer you mean the (core competency) right?
Oladosu
what is mean,median and mode
Ikeh Reply
mean is the average number of a given data
Gallant
median is the middle number of a given data
Gallant
in a given data sorry
Mitchel
hi
Sajib
Pls am new here
Physcal
what are development bank in Nigeria
Adedigba Reply
.hi
Physcal
hi
Adedigba
hw
Physcal
and cool
Rosie
nice to meet everyone
Rosie
hi how are dears
Mumtaz
how can we development economic in our country
Mumtaz
hi
Charm
Payroll and​ 4p
Wasuroj
Agriculture
Wasuroj
Export
Wasuroj
Transport
Wasuroj
Change management​ and​ cerrancy
Wasuroj
Empoyee
Wasuroj
Lawyer army and​ Lawyer​
Wasuroj
animal husbandry essay
Rakuane Reply
what's the primary location of capital and money market respectively
ALIMI
what is bank
Nyakeh Reply
A bank is an institution set up purposely for the save keeping of money and other valuables
Alpha
A bank is a financial institution which helps people to save their money
Cyprian
pls define the HRM and HRP
Mumtaz
we have no money in bank....the bank owes us
Ray
When a supply curve start from the origin price elasticity of supply is unitory. Provide a simple proof
Felix Reply
Oui
Bobbo
please help someone should help me this question
Felix
ok
Anita
what is price
Divine Reply
the perchesing amount of something is called price
Nasir
OK pls tell me about economic elasticity of supply and demand
Mumtaz Reply
elasticity in economics is a measurement of the ratio of percentage change in quantity of a particular commodity to the percentage change in a factor that influence demand-price, consumer's income and price of another good
Epie
same with supply. How ever economics focus only on price elasticity of supply(PES)
Epie
using diagrams defferentiate between price ceiling and price floors
VIDELIS Reply
price ceiling lies below the equilibrium price and vice versa
Freeman
who is a broker
ALIMI Reply
a broker is a middle person between two other parties who makes all the arrangements required to conduct the the transaction.
rkesh
A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place.
Kimberly Reply
Jeannette has $5 and $10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
August Reply
What is the expressiin for seven less than four times the number of nickels
Leonardo Reply
How do i figure this problem out.
how do you translate this in Algebraic Expressions
linda Reply
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
What is power set
Satyabrata Reply
Period of sin^6 3x+ cos^6 3x
Sneha Reply
Period of sin^6 3x+ cos^6 3x
Sneha Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask