# 3.12 Trigonometric values, equations and identities  (Page 3/3)

 Page 3 / 3

$⇒x=2\pi -\theta =2\pi -\frac{\pi }{3}=\frac{5\pi }{3}$

Problem : Find angles in [0,2π], if

$\mathrm{cot}x=\frac{1}{\sqrt{3}}$

Solution : Considering only the magnitude of numerical value, we have :

$⇒\mathrm{cot}\theta =\frac{1}{\sqrt{3}}=\mathrm{cot}\frac{\pi }{3}$

Thus, required acute angle is π/3. Now, cotangent function is positive in first and third quadrants. Looking at the value diagram, the angle in third quadrant is :

$⇒x=\pi +\theta =\pi +\frac{\pi }{3}=\frac{4\pi }{3}$

Hence angles are π/3 and 4π/3.

## Negative angles

When we consider angle as a real number entity, we need to express angles as negative angles as well. The corresponding negative angle (y) is obtained as :

$y=x-2\pi$

Thus, negative angles corresponding to 4π/3 and 5π/3 are :

$⇒y=\frac{4\pi }{3}-2\pi =-\frac{2\pi }{3}$ $⇒y=\frac{5\pi }{3}-2\pi =-\frac{\pi }{3}$

We can also find negative angle values using a separate negative value diagram (see figure). We draw negative value diagram by demarking quadrants with corresponding angles and writing angle values for negative values. We deduct “2π” from the relation for positive value diagram.

Let us consider sinx = -√3/2 again. The acute angle in first quadrant is π/3. Sine is negative in third and fourth quadrants. The angles in these quadrants are :

$y=-\pi +\theta =-\pi +\frac{\pi }{3}=-\frac{2\pi }{3}$ $y=-\theta =-\frac{\pi }{3}$

## Zeroes of sine and cosine functions

Trigonometric equations are formed by equating trigonometric functions to zero. The solutions of these equations are :

1 : $\mathrm{sin}x=0\phantom{\rule{1em}{0ex}}⇒x=n\pi ;n\in Z$

2 : $\mathrm{cos}x=0\phantom{\rule{1em}{0ex}}⇒x=\left(2n+1\right)\frac{\pi }{2};n\in Z$

## Definition of other trigonometric functions

We define other trigonometric functions in the light of zeroes of sine and cosine as listed above :

$\mathrm{tan}x=\frac{\mathrm{sin}x}{\mathrm{cos}x};x\ne \left(2n+1\right)\frac{\pi }{2};n\in Z$ $\mathrm{cot}x=\frac{\mathrm{cos}x}{\mathrm{sin}x};x\ne n\pi ;n\in Z$ $\mathrm{cosec}x=\frac{1}{\mathrm{sin}x};x\ne n\pi ;n\in Z$ $\mathrm{sec}x=\frac{1}{\mathrm{cos}x};x\ne \left(2n+1\right)\frac{\pi }{2};n\in Z$

## Trigonometric equations

Trigonometric function can be used to any other values as well. Solutions of such equations are given here without deduction for reference purpose. Solutions of three equations involving sine, cosine and tangent functions are listed here :

1. Sine equation

$\mathrm{sin}x=a=\mathrm{sin}y$

$x=n\pi +{\left(-1\right)}^{n}y;n\in Z$

2. Cosine equation

$\mathrm{cos}x=a=\mathrm{cos}y$

$x=2n\pi ±y;n\in Z$

3. Tangent equation

$\mathrm{tan}x=a=\mathrm{tan}y$

$x=n\pi +y;n\in Z$

In order to understand the working with trigonometric equation, let us consider an equation :

$\mathrm{sin}x=-\frac{\sqrt{3}}{2}$

As worked out earlier, -√3/2 is sine value of two angles in the interval [0, π]. Important question here is to know which angle should be used in the solution set. Here,

$⇒\mathrm{sin}\frac{4\pi }{3}=\mathrm{sin}\frac{5\pi }{3}=-\frac{\sqrt{3}}{2}$

We can write general solution using either of two values.

$x=n\pi +{\left(-1\right)}^{n}\frac{4\pi }{3};n\in Z$ $⇒x=n\pi +{\left(-1\right)}^{n}\frac{5\pi }{3};n\in Z$

The solution sets appear to be different, but are same on expansion. Conventionally, however, we use the smaller of two angles which lie in the interval [0, π]. In order to check that two series are indeed same, let us expand series from n=-4 to n=4,

For $⇒x=n\pi +{\left(-1\right)}^{n}\frac{4\pi }{3};n\in Z$

$-4\pi +\frac{4\pi }{3}=-\frac{8\pi }{3},-3\pi -\frac{4\pi }{3}=-\frac{13\pi }{3},-2\pi +\frac{4\pi }{3}=-\frac{2\pi }{3},-\pi -\frac{4\pi }{3}=-\frac{7\pi }{3},$

$0+4\pi /3=\frac{4\pi }{3},\pi -\frac{4\pi }{3}=-\frac{\pi }{3},2\pi +\frac{4\pi }{3}=\frac{10\pi }{3},3\pi -\frac{4\pi }{3}=\frac{5\pi }{3},4\pi +\frac{4\pi }{3}=\frac{16\pi }{3}$

Arranging in increasing order :

$-\frac{13\pi }{3},-\frac{8\pi }{3},-\frac{7\pi }{3},-\frac{2\pi }{3},-\frac{\pi }{3},\frac{4\pi }{3},\frac{5\pi }{3},\frac{10\pi }{3},\frac{16\pi }{3}$

For $⇒x=n\pi +{\left(-1\right)}^{n}\frac{5\pi }{3};n\in Z$

$-4\pi +\frac{5\pi }{3}=-\frac{7\pi }{3},-3\pi -\frac{5\pi }{3}=-\frac{14\pi }{3},-2\pi +\frac{5\pi }{3}=-\frac{\pi }{3},-\pi -\frac{5\pi }{3}=-\frac{8\pi }{3},$

$0+\frac{5\pi }{3}=\frac{5\pi }{3},\pi -\frac{5\pi }{3}=-\frac{2\pi }{3},2\pi +\frac{5\pi }{3}=\frac{11\pi }{3},3\pi -\frac{5\pi }{3}=\frac{4\pi }{3},4\pi +\frac{5\pi }{3}=\frac{17\pi }{3}$

Arranging in increasing order :

$-\frac{14\pi }{3},-\frac{8\pi }{3},-\frac{7\pi }{3},-\frac{2\pi }{3},-\frac{\pi }{3},\frac{4\pi }{3},\frac{5\pi }{3},\frac{11\pi }{3},\frac{17\pi }{3}$

We see that there are common terms. There are, however, certain terms which do not appear in other series. We can though find those missing terms by evaluating some more values. For example, if we put n = 6 in the second series, then we get the missing term -13π/3. Also, putting n=5,7, we get 10π/3 and 16π/3. Thus, all missing terms in second series are obtained. Similarly, we can compute few more values in first series to find missing terms. We, therefore, conclude that both these series are equal.

Problem : Find solution of equation :

$2{\mathrm{cos}}^{2}x+3\mathrm{sin}x=0$

Solution : Our objective here is to covert equation to linear form. Here, we can not convert sine term to cosine term, but we can convert ${\mathrm{cos}}^{2}x$ in terms of ${\mathrm{sin}}^{2}x$ .

$⇒2\left(1-\mathrm{sin}{}^{2}x\right)+3\mathrm{sin}x=0$ $⇒2-2\mathrm{sin}{}^{2}x+3\mathrm{sin}x=0$ $⇒2\mathrm{sin}{}^{2}x-3\mathrm{sin}x-2=0$

It is a quadratic equation in sinx. Factoring, we have :

$⇒2\mathrm{sin}{}^{2}x+\mathrm{sin}x-4\mathrm{sin}x-2=0$ $⇒\mathrm{sin}x\left(2\mathrm{sin}x+1\right)-2\left(2\mathrm{sin}x+1\right)=0$ $⇒\left(2\mathrm{sin}x+1\right)\left(\mathrm{sin}x-2\right)=0$

Either, sinx=-1/2 or sinx = 2. But sinx can not be equal to 2. hence,

$⇒\mathrm{sin}x=-\frac{1}{2}=\mathrm{sin}\left(\pi +\frac{\pi }{6}\right)=\mathrm{sin}\left(\frac{7\pi }{6}\right)$ $⇒x=n\pi +{\left(-1\right)}^{n}\frac{7\pi }{6};\phantom{\rule{1em}{0ex}}n\in Z$

Note : We shall not work with any other examples here as purpose of this module is only to introduce general concepts of angles, identities and equations. These topics are part of separate detailed study.

## Reciprocal identities

Reciprocals are defined for values of x for which trigonometric function in the denominator is not zero.

$\mathrm{sin}x=\frac{1}{\mathrm{cosec}x};\phantom{\rule{1em}{0ex}}\mathrm{cos}x=\frac{1}{\mathrm{sec}x};\phantom{\rule{1em}{0ex}}\mathrm{tan}x=\frac{1}{\mathrm{cot}x};$ $\mathrm{cosec}x=\frac{1}{\mathrm{sin}x};\phantom{\rule{1em}{0ex}}\mathrm{sec}x=\frac{1}{\mathrm{cos}x};\phantom{\rule{1em}{0ex}}\mathrm{cot}x=\frac{1}{\mathrm{tan}x}$

## Negative angle identities

$\mathrm{cos}\left(-x\right)=\mathrm{cos}x;\phantom{\rule{1em}{0ex}}\mathrm{sin}\left(-x\right)=-\mathrm{sin}x;\phantom{\rule{1em}{0ex}}\mathrm{tan}\left(-x\right)=-\mathrm{tan}x$

## Pythagorean identities

${\mathrm{cos}}^{2}x+{\mathrm{sin}}^{2}x=1;\phantom{\rule{1em}{0ex}}1+{\mathrm{tan}}^{2}x={\mathrm{sec}}^{2}x;\phantom{\rule{1em}{0ex}}1+{\mathrm{cot}}^{2}x={\mathrm{cosec}}^{2}x$

## Sum/difference identities

$\mathrm{sin}\left(x±y\right)=\mathrm{sin}x\mathrm{cos}y±\mathrm{sin}y\mathrm{cos}x$ $\mathrm{cos}\left(x±y\right)=\mathrm{cos}x\mathrm{cos}y\mp \mathrm{sin}x\mathrm{sin}y$ $\mathrm{tan}\left(x±y\right)=\mathrm{tan}sx±\mathrm{tan}y/1\mp \mathrm{tan}x\mathrm{tan}y;\phantom{\rule{1em}{0ex}}\text{x,y and (x+y) are not odd multiple of π/2}$ $\mathrm{cot}\left(x±y\right)=\mathrm{cot}x\mathrm{cot}y\mp 1/\mathrm{cot}y±\mathrm{cot}x;\phantom{\rule{1em}{0ex}}\text{x,y and (x+y) are not odd multiple of π/2}$

## Double angle identities

$\mathrm{sin}2x=2\mathrm{sin}x\mathrm{cos}x=\frac{2\mathrm{tan}x}{1+\mathrm{tan}{}^{2}x}$ $\mathrm{cos}2x={\mathrm{cos}}^{2}x-{\mathrm{sin}}^{2}x=2{\mathrm{cos}}^{2}x-1=1-2{\mathrm{sin}}^{2}x=\frac{1-{\mathrm{tan}}^{2}x}{1+{\mathrm{tan}}^{2}x}$ $\mathrm{tan}2x=\frac{2\mathrm{tan}x}{1-\mathrm{tan}{}^{2}x}$ $\mathrm{cot}2x=\frac{{\mathrm{cot}}^{2}x-1}{2\mathrm{cot}x}$

## Triple angle identities

$\mathrm{sin}3x=3\mathrm{sin}x-4{\mathrm{sin}}^{3}x$ $\mathrm{cos}3x=4{\mathrm{cos}}^{3}x-3\mathrm{cos}x$ $\mathrm{tan}3x=\frac{3\mathrm{tan}x-{\mathrm{tan}}^{3}x}{1-3{\mathrm{tan}}^{2}x}$ $\mathrm{cot}3x=\frac{3\mathrm{cot}x-{\mathrm{cot}}^{3}x}{1-3{\mathrm{cot}}^{2}x}$

## Power reduction identities

$\mathrm{sin}{}^{2}x=\frac{1-\mathrm{cos}2x}{2}$ $\mathrm{cos}{}^{2}x=\frac{1+\mathrm{cos}2x}{2}$ $\mathrm{sin}{}^{3}x=\frac{3\mathrm{sin}x-\mathrm{sin}3x}{4}$ ${\mathrm{cos}}^{3}x=\frac{\mathrm{cos}3x+3\mathrm{cos}x}{4}$

## Product to sum identities

$2\mathrm{sin}x\mathrm{cos}y=\mathrm{sin}\left(x+y\right)+\mathrm{sin}\left(x-y\right)$ $2\mathrm{cos}x\mathrm{sin}y=\mathrm{sin}\left(x+y\right)-\mathrm{sin}\left(x-y\right)$ $2\mathrm{cos}x\mathrm{cos}y=\mathrm{cos}\left(x+y\right)+\mathrm{cos}\left(x-y\right)$ $2\mathrm{sin}x\mathrm{sin}y=-\mathrm{cos}\left(x+y\right)+\mathrm{cos}\left(x-y\right)=\mathrm{cos}\left(x-y\right)-\mathrm{cos}\left(x+y\right)$

## Sum to product identities

$\mathrm{sin}x+\mathrm{sin}y=2\mathrm{sin}\frac{\left(x+y\right)}{2}\mathrm{cos}\frac{\left(x-y\right)}{2}$ $\mathrm{sin}x-\mathrm{sin}y=2\mathrm{cos}\frac{\left(x+y\right)}{2}\mathrm{sin}\frac{\left(x-y\right)}{2}$ $\mathrm{cos}x+\mathrm{cos}y=2\mathrm{cos}\frac{\left(x+y\right)}{2}\mathrm{cos}\frac{\left(x-y\right)}{2}$ $\mathrm{cos}x-\mathrm{cos}y=-2\mathrm{sin}\frac{\left(x+y\right)}{2}\mathrm{sin}\frac{\left(x-y\right)}{2}=2\mathrm{sin}\frac{\left(x+y\right)}{2}\mathrm{sin}\frac{\left(y-x\right)}{2}$

## Half angle identities

$\mathrm{sin}\frac{x}{2}=±\sqrt{\left\{\frac{\left(1-\mathrm{cos}x\right)}{2}\right\}}$ $\mathrm{cos}\frac{x}{2}=±\sqrt{\left\{\frac{\left(1+\mathrm{cos}x\right)}{2}\right\}}$ $\mathrm{tan}\frac{x}{2}=\mathrm{cosec}x-\mathrm{cot}x=±\sqrt{\left\{\frac{\left(1-\mathrm{cos}x\right)}{\left(1+\mathrm{cos}x\right)}\right\}}=\frac{\mathrm{sin}x}{1+\mathrm{cos}x}=\frac{1-\mathrm{cos}x}{\mathrm{sin}x}$ $\mathrm{cot}\frac{x}{2}=\mathrm{cosec}x+\mathrm{cot}x=±\sqrt{\left\{\frac{\left(1+\mathrm{cos}x\right)}{\left(1-\mathrm{cos}x\right)}\right\}}=\frac{\mathrm{sin}x}{1-\mathrm{cos}x}=\frac{1+\mathrm{cos}x}{\mathrm{sin}x}$

#### Questions & Answers

what are the money value
Nothing more than a purchase power, in other words, $100 now, must have the same value after 1 year. Carlos what is Monopoly Rebecca Reply what is money Lawal Reply It can be define as a big transaction that can control any business for one place to another base. Akinlo money is recognisable note to accept both parties selling and buying Hassan i don still understan Rene hey Abdul hi Rene money is anything generally accepted as a medium of exchange Awwal Money is anything generally accepted as a medium of exchange and for the settlement of goods and services . Korda hi good ppl, pls help out Tumi discuss human and natural resources as develop strategies ro improving living condition of citizens in developing countries. Tumi I don't understand the question. Naomi it's a form of currency used for 2 or more individuals or parties in order to reach their amicable personal or business attainment. one must understand that money itself can manifest in multiple fashions for which the individuals or parties adheres. are u trying to say we shld discuss ways in which human natural resources help in improving living condition of citizens in developing countries? Naomi money is a legal thunder generally accepted as a medium of exchange for the payment of debt ,goods and services Naomi money is a way of payment. Carlos money is any thing that is generally accepted as a medium of exchange good for good and settlement of debt and means of payment Yillah money is nothing but a object which is used for exchange of goods and services. Harshita money is anything that is generally accepted as payment of goods and services and settlement of debt Rebecca what is demand Melissa Reply demand is where the customer is willing and able to buy goods and services during a given period of time idk demand is the ability and willingness of an individual to buy goods and services at a given price in a particular period of time Alpha demand is the ability to buy a specific quantities of goods and services at a given price and at a specific period of time rosemary what are the rules of demand rosemary Rosemary Nsebon, Do you mean laws of demand? Alpha what are the rules of demand Rene the rule of demand is the higher the price the lower the quantity demanded and the lower the price the higher the quantity demanded mbi thank Rene what is unemployment Rebecca unemployment is a scenario or a phenomenon in an economy whereby people are willing are able to work but cannot a job mbi Suppose you have a team of two workers: one is a baker and one is a chef. Explain why the kitchen can produce more meals in a given period of time if each worker specializes in what they do best than if each worker tries to do everything from appetizer to dessert. please I need a urgent answer Oladosu Reply Enables individuals and countries to consume a variety of goods and services Iddrisu what is the meaning of competency Oladosu Reply competency is an ability and courage to do something perfectly Abdullahi ability to perform some task Segun rival Ray thanks 🙏 it is also the same with the core competency Oladosu A sufficient supply Ebenezer Ebenezer you mean the (core competency) right? Oladosu what is mean,median and mode Ikeh Reply mean is the average number of a given data Gallant median is the middle number of a given data Gallant in a given data sorry Mitchel hi Sajib Pls am new here Physcal what are development bank in Nigeria Adedigba Reply .hi Physcal hi Adedigba hw Physcal and cool Rosie nice to meet everyone Rosie hi how are dears Mumtaz how can we development economic in our country Mumtaz hi Charm Payroll and​ 4p Wasuroj Agriculture Wasuroj Export Wasuroj Transport Wasuroj Change management​ and​ cerrancy Wasuroj Empoyee Wasuroj Lawyer army and​ Lawyer​ Wasuroj animal husbandry essay Rakuane Reply what's the primary location of capital and money market respectively ALIMI what is bank Nyakeh Reply A bank is an institution set up purposely for the save keeping of money and other valuables Alpha A bank is a financial institution which helps people to save their money Cyprian pls define the HRM and HRP Mumtaz we have no money in bank....the bank owes us Ray When a supply curve start from the origin price elasticity of supply is unitory. Provide a simple proof Felix Reply Oui Bobbo please help someone should help me this question Felix ok Anita what is price Divine Reply the perchesing amount of something is called price Nasir OK pls tell me about economic elasticity of supply and demand Mumtaz Reply elasticity in economics is a measurement of the ratio of percentage change in quantity of a particular commodity to the percentage change in a factor that influence demand-price, consumer's income and price of another good Epie same with supply. How ever economics focus only on price elasticity of supply(PES) Epie using diagrams defferentiate between price ceiling and price floors VIDELIS Reply price ceiling lies below the equilibrium price and vice versa Freeman who is a broker ALIMI Reply a broker is a middle person between two other parties who makes all the arrangements required to conduct the the transaction. rkesh A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place. Kimberly Reply Jeannette has$5 and \$10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
What is the expressiin for seven less than four times the number of nickels
How do i figure this problem out.
how do you translate this in Algebraic Expressions
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
What is power set
Period of sin^6 3x+ cos^6 3x
Period of sin^6 3x+ cos^6 3x