<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the effects of chemical nature, physical state, temperature, concentration, and catalysis on reaction rates

The rates at which reactants are consumed and products are formed during chemical reactions vary greatly. We can identify five factors that affect the rates of chemical reactions: the chemical nature of the reacting substances, the state of subdivision (one large lump versus many small particles) of the reactants, the temperature of the reactants, the concentration of the reactants, and the presence of a catalyst.

The chemical nature of the reacting substances

The rate of a reaction depends on the nature of the participating substances. Reactions that appear similar may have different rates under the same conditions, depending on the identity of the reactants. For example, when small pieces of the metals iron and sodium are exposed to air, the sodium reacts completely with air overnight, whereas the iron is barely affected. The active metals calcium and sodium both react with water to form hydrogen gas and a base. Yet calcium reacts at a moderate rate, whereas sodium reacts so rapidly that the reaction is almost explosive.

The state of subdivision of the reactants

Except for substances in the gaseous state or in solution, reactions occur at the boundary, or interface, between two phases. Hence, the rate of a reaction between two phases depends to a great extent on the surface contact between them. A finely divided solid has more surface area available for reaction than does one large piece of the same substance. Thus a liquid will react more rapidly with a finely divided solid than with a large piece of the same solid. For example, large pieces of iron react slowly with acids; finely divided iron reacts much more rapidly ( [link] ). Large pieces of wood smolder, smaller pieces burn rapidly, and saw dust burns explosively.

This figure shows two photos labeled (a) and (b). Photo (a) shows the bottom of a test tube. The test tube is filled with a dark gas, and there is a dark substance and bubbles in the bottom. Photo (b) shows a rod and bubbles in a test tube similar to photo (a), but the gas in the test tube is not as dark.
(a) Iron powder reacts rapidly with dilute hydrochloric acid and produces bubbles of hydrogen gas because the powder has a large total surface area: 2Fe( s ) + 6HCl( aq ) 2FeCl3( aq ) + 3H2( g ). (b) An iron nail reacts more slowly.

Temperature of the reactants

Chemical reactions typically occur faster at higher temperatures. Food can spoil quickly when left on the kitchen counter. However, the lower temperature inside of a refrigerator slows that process so that the same food remains fresh for days. We use a burner or a hot plate in the laboratory to increase the speed of reactions that proceed slowly at ordinary temperatures. In many cases, an increase in temperature of only 10 °C will approximately double the rate of a reaction in a homogeneous system.

Concentrations of the reactants

The rates of many reactions depend on the concentrations of the reactants. Rates usually increase when the concentration of one or more of the reactants increases. For example, calcium carbonate (CaCO 3 ) deteriorates as a result of its reaction with the pollutant sulfur dioxide. The rate of this reaction depends on the amount of sulfur dioxide in the air ( [link] ). An acidic oxide, sulfur dioxide combines with water vapor in the air to produce sulfurous acid in the following reaction:

Questions & Answers

what are oxidation numbers
Idowu Reply
pls what is electrolysis
Idowu Reply
Electrolysis is the process by which ionic substances are decomposed (broken down) into simpler substances when an electric current is passed through them. ... Electricity is the flow of electrons or ions. For electrolysis to work, the compound must contain ions.
AZEEZ
thanks
Idowu
what is the basicity of an atom
Eze Reply
basicity is the number of replaceable Hydrogen atoms in a Molecule. in H2SO4, the basicity is 2. in Hcl, the basicity is 1
Inemesit
how to solve oxidation number
Mr Reply
mention some examples of ester
Chinenye Reply
do you mean ether?
Megan
what do converging lines on a mass Spectra represent
Rozzi Reply
would I do to help me know this topic ?
Bulus
oi
Amargo
what the physic?
Bassidi Reply
who is albert heistein?
Bassidi
similarities between elements in the same group and period
legend Reply
what is the ratio of hydrogen to oxulygen in carbohydrates
Nadeen Reply
bunubyyvyhinuvgtvbjnjnygtcrc
Nadeen
yvcrzezalakhhehuzhbshsunakakoaak
Nadeen
what is poh and ph
Amarachi Reply
please what is the chemical configuration of sodium
Sharon
2.8.1
david
1s²2s²2p⁶3s¹
Haile
2, 6, 2, 1
Salman
1s2, 2s2, 2px2, 2py2, 2pz2, 3s1
Justice
1s2,2s2,2py2,2
Maryify
1s2,2s2,2p6,
Francis
1s2,2s2,2px2,2py2,2pz2,3s1
Nnyila
what is criteria purity
Austin Reply
cathode is a negative ion why is it that u said is negative
Michael Reply
cathode is a negative electrode while cation is a positive ion. cation move towards cathode plate.
king
CH3COOH +NaOH ,complete the equation
david Reply
compare and contrast the electrical conductivity of HCl and CH3cooH
Sa Reply
The must be in dissolved in water (aqueous). Electrical conductivity is measured in Siemens (s). HCl (aq) has higher conductivity, as it fully ionises (small portion of CH3COOH (aq) ionises) when dissolved in water. Thus, more free ions to carry charge.
Abdelkarim
HCl being an strong acid will fully ionize in water thus producing more mobile ions for electrical conduction than the carboxylic acid
Valentine
differiante between a weak and a strong acid
david
how can I tell when an acid is weak or Strong
Amarachi
an aqueous solution of copper sulphate was electrolysed between graphite electrodes. state what was observed at the cathode
Bakanya Reply
write the equation for the reaction that took place at the anode
Bakanya
what is enthalpy of combustion
Bakanya
Enthalpy change of combustion: It is the enthalpy change when 1 mole of substance is combusted with excess oxygen under standard conditions. Elements are in their standard states. Conditions: pressure = 1 atm Temperature =25°C
Abdelkarim
Observation at Cathode: Cu metal deposit (pink/red solid).
Abdelkarim
Equation at Anode: (SO4)^2- + 4H^+ + 2e^- __> SO2 + 2H2O
Abdelkarim
Equation : CuSO4 -> Cu^2+ + SO4^2- equation at katode: 2Cu^2+ + 4e -> 2Cu equation at anode: 2H2O -> 4H+ + O2 +4e at the anode which reacts is water because SO4 ^ 2- cannot be electrolyzed in the anode
Niken
Practice Key Terms 1

Get the best Chemistry course in your pocket!





Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask