<< Chapter < Page Chapter >> Page >

    Topics covered in this chapter

  • Equations of motion of a Newtonian fluid
  • The Reynolds number
  • Dissipation of Energy by Viscous Forces
  • The energy equation
  • The effect of compressibility
  • Resume of the development of the equations
  • Special cases of the equations
    • Restrictions on types of motion
      • Isochoric motion
      • Irrotational motion
      • Plane flow
      • Axisymmetric flow
      • Parallel flow perpendicular to velocity gradient
    • Specialization on the equations of motion
      • Hydrostatics
      • Steady flow
      • Creeping flow
      • Inertial flow
      • Boundary layer flow
      • Lubrication and film flow
    • Specialization of the constitutive equation
      • Incompressible flow
      • Perfect (inviscid, nonconducting) fluid
      • Ideal gas
      • Piezotropic fluid and barotropic flow
      • Newtonian fluids
  • Boundary conditions
    • Surfaces of symmetry
    • Periodic boundary
    • Solid surfaces
    • Fluid surfaces
    • Boundary conditions for the potentials and vorticity
  • Scaling, dimensional analysis, and similarity
    • Dimensionless groups based on geometry
    • Dimensionless groups based on equations of motion and energy
    • Friction factor and drag coefficients
  • Bernoulli theorems
    • Steady, barotropic flow of an inviscid, nonconducting fluid with conservative body forces
    • Coriolis force
    • Irrotational flow
    • Ideal gas

Reading assignment

Chapter 2&3 in BSL
Chapter 6 in Aris

Equations of motion of a newtonian fluid

We will now substitute the constitutive equation for a Newtonian fluid into Cauchy's equation of motion to derive the Navier-Stokes equation.

Cauchy's equation of motion is

ρ α i = ρ D v i D t = ρ f i + T i j , j or ρ a = ρ D v D t = ρ f + T

The constitutive equation for a Newtonian fluid is

T i j = ( - p + λ Θ ) δ i j + 2 μ e i j or T = ( - p + λ Θ ) I + 2 μ e

The divergence of the rate of deformation tensor needs to be restated with a more meaningful expression.

e i j , j = 1 2 x j v i x j + v j x i = 1 2 2 v i x j x j + 1 2 x i v j x j = 1 2 2 v i + 1 2 x i ( v ) . or e = 1 2 2 v + 1 2 ( v )

Thus

T i j , j = - p x i + ( λ + μ ) x i ( v ) + μ 2 v i or ρ D v D t = ρ f - p + ( λ + μ ) Θ + μ 2 v

Substituting this expression into Cauchy's equation gives the Navier-Stokes equation.

ρ D v i D t = ρ f i - p x i + ( λ + μ ) x i ( v ) + μ 2 v i or ρ D v D t = ρ f - p + ( λ + μ ) Θ + μ 2 v

The Navier-Stokes equation is sometimes expressed in terms of the acceleration by dividing the equation by the density.

a = D v D t = v t + ( v ) v = f - 1 ρ p + ( λ ' + v ) Θ + v 2 v

where v = μ / ρ and λ ' = λ / ρ . ν is known as the kinematic viscosity and if Stokes' relation is assumed λ ' + ν = ν / 3 . Using the identities

2 v ( v ) - × ( × v ) w × v

the last equation can be modified to give

a = D v D t = f - 1 ρ p + ( λ ' + 2 ν ) Θ - ν × w .

If the body force f can be expressed as the gradient of a potential (conservative body force) and density is a single valued function of pressure (piezotropic), the Navier-Stokes equation can be expressed as follows.

a = D v D t = - [ Ω + P ( p ) - ( λ ' + 2 ν ) Θ ] - ν × w where f = - Ω and P ( p ) = p d p ' ρ ( p ' )

Assignment 6.1

Do exercises 6.11.1, 6.11.2, 6.11.3, and 6.11.4 in Aris.

The reynolds number

Later we will discuss the dimensionless groups resulting from the differential equations and boundary conditions. However, it is instructive to derive the Reynolds number N R e from the Navier-Stokes equation at this point. The Reynolds number is the characteristic ratio of the inertial and viscous forces. When it is very large the inertial terms dominate the viscous terms and vice versa when it is very small. Its value gives the justification for assumptions of the limiting cases of inviscid flow and creeping flow.

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Transport phenomena. OpenStax CNX. May 24, 2010 Download for free at http://cnx.org/content/col11205/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Transport phenomena' conversation and receive update notifications?

Ask