# 2.6 The power rules for exponents

 Page 1 / 1
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. The symbols, notations, and properties of numbers that form the basis of algebra, as well as exponents and the rules of exponents, are introduced in this chapter. Each property of real numbers and the rules of exponents are expressed both symbolically and literally. Literal explanations are included because symbolic explanations alone may be difficult for a student to interpret.Objectives of this module: understand the power rules for powers, products, and quotients.

## Overview

• The Power Rule for Powers
• The Power Rule for Products
• The Power Rule for quotients

## The power rule for powers

The following examples suggest a rule for raising a power to a power:

${\left({a}^{2}\right)}^{3}={a}^{2}\text{\hspace{0.17em}}\cdot \text{\hspace{0.17em}}\text{​}{a}^{2}\text{\hspace{0.17em}}\cdot \text{\hspace{0.17em}}{a}^{2}$

Using the product rule we get

$\begin{array}{l}{\left({a}^{2}\right)}^{3}={a}^{2+2+2}\hfill \\ {\left({a}^{2}\right)}^{3}={a}^{3\text{\hspace{0.17em}}\cdot \text{\hspace{0.17em}}2}\hfill \\ {\left({a}^{2}\right)}^{3}={a}^{6}\hfill \end{array}$

$\begin{array}{lll}{\left({x}^{9}\right)}^{4}\hfill & =\hfill & {x}^{9}\cdot {x}^{9}\cdot {x}^{9}\cdot {x}^{9}\hfill \\ {\left({x}^{9}\right)}^{4}\hfill & =\hfill & {x}^{9+9+9+9}\hfill \\ {\left({x}^{9}\right)}^{4}\hfill & =\hfill & {x}^{4\text{\hspace{0.17em}}\cdot \text{\hspace{0.17em}}9}\hfill \\ {\left({x}^{9}\right)}^{4}\hfill & =\hfill & {x}^{36}\hfill \end{array}$

## Power rule for powers

If $x$ is a real number and $n$ and $m$ are natural numbers,
${\left({x}^{n}\right)}^{m}={x}^{n\cdot m}$

To raise a power to a power, multiply the exponents.

## Sample set a

Simplify each expression using the power rule for powers. All exponents are natural numbers.

$\begin{array}{cc}{\left({x}^{3}\right)}^{4}=\begin{array}{||}\hline {x}^{3\text{\hspace{0.17em}}\cdot \text{\hspace{0.17em}}4}\\ \hline\end{array}\text{\hspace{0.17em}}{x}^{12}& \text{The}\text{\hspace{0.17em}}\text{box}\text{\hspace{0.17em}}\text{represents}\text{\hspace{0.17em}}\text{a}\text{\hspace{0.17em}}\text{step}\text{\hspace{0.17em}}\text{done}\text{\hspace{0.17em}}\text{mentally.}\end{array}$

${\left({y}^{5}\right)}^{3}=\begin{array}{||}\hline {y}^{5\text{\hspace{0.17em}}\cdot \text{\hspace{0.17em}}3}\\ \hline\end{array}={y}^{15}$

${\left({d}^{20}\right)}^{6}=\begin{array}{||}\hline {d}^{20\text{\hspace{0.17em}}\cdot \text{\hspace{0.17em}}6}\\ \hline\end{array}={d}^{120}$

${\left({x}^{\square }\right)}^{△}=\text{\hspace{0.17em}}{x}^{\square △}$

Although we don’t know exactly what number $\square △$ is, the notation $\square △$ indicates the multiplication.

## Practice set a

Simplify each expression using the power rule for powers.

${\left({x}^{5}\right)}^{4}$

${x}^{20}$

${\left({y}^{7}\right)}^{7}$

${y}^{49}$

## The power rule for products

The following examples suggest a rule for raising a product to a power:

$\begin{array}{llll}{\left(ab\right)}^{3}\hfill & =\hfill & ab\cdot ab\cdot ab\hfill & \text{Use}\text{\hspace{0.17em}}\text{​}\text{the}\text{\hspace{0.17em}}\text{commutative}\text{\hspace{0.17em}}\text{property}\text{\hspace{0.17em}}\text{of}\text{\hspace{0.17em}}\text{multiplication}.\hfill \\ \hfill & =\hfill & aaabbb\hfill & \hfill \\ \hfill & =\hfill & {a}^{3}{b}^{3}\hfill & \hfill \end{array}$

$\begin{array}{lll}{\left(xy\right)}^{5}\hfill & =\hfill & xy\cdot xy\cdot xy\cdot xy\cdot xy\hfill \\ \hfill & =\hfill & xxxxx\cdot yyyyy\hfill \\ \hfill & =\hfill & {x}^{5}{y}^{5}\hfill \end{array}$

$\begin{array}{lll}{\left(4xyz\right)}^{2}\hfill & =\hfill & 4xyz\cdot 4xyz\hfill \\ \hfill & =\hfill & 4\cdot 4\cdot xx\cdot yy\cdot zz\hfill \\ \hfill & =\hfill & 16{x}^{2}{y}^{2}{z}^{2}\hfill \end{array}$

## Power rule for products

If $x$ and $y$ are real numbers and $n$ is a natural number,
${\left(xy\right)}^{n}={x}^{n}{y}^{n}$

To raise a product to a power, apply the exponent to each and every factor.

## Sample set b

Make use of either or both the power rule for products and power rule for powers to simplify each expression.

${\left(ab\right)}^{7}={a}^{7}{b}^{7}$

${\left(axy\right)}^{4}={a}^{4}{x}^{4}{y}^{4}$

$\begin{array}{cc}{\left(3ab\right)}^{2}={3}^{2}{a}^{2}{b}^{2}=9{a}^{2}{b}^{2}& \text{Don't}\text{\hspace{0.17em}}\text{forget}\text{\hspace{0.17em}}\text{to}\text{\hspace{0.17em}}\text{apply}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{exponent}\text{\hspace{0.17em}}\text{to}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{3!}\end{array}$

$\begin{array}{c}{\left(2st\right)}^{5}={2}^{5}{s}^{5}{t}^{5}=32{s}^{5}{t}^{5}\end{array}$

$\begin{array}{ll}{\left(a{b}^{3}\right)}^{2}={a}^{2}{\left({b}^{3}\right)}^{2}={a}^{2}{b}^{6}\hfill & \text{We}\text{\hspace{0.17em}}\text{used}\text{\hspace{0.17em}}\text{two}\text{\hspace{0.17em}}\text{rules}\text{\hspace{0.17em}}\text{here}\text{.}\text{\hspace{0.17em}}\text{First,}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{power}\text{\hspace{0.17em}}\text{rule}\text{\hspace{0.17em}}\text{for}\hfill \\ \hfill & \text{products}\text{.}\text{\hspace{0.17em}}\text{Second,}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{power}\text{\hspace{0.17em}}\text{rule}\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}\text{powers.}\hfill \end{array}$

$\begin{array}{ll}{\left(7{a}^{4}{b}^{2}{c}^{8}\right)}^{2}\hfill & ={7}^{2}{\left({a}^{4}\right)}^{2}{\left({b}^{2}\right)}^{2}{\left({c}^{8}\right)}^{2}\hfill \\ \hfill & =49{a}^{8}{b}^{4}{c}^{16}\hfill \end{array}$

$\begin{array}{cc}\text{If}\text{\hspace{0.17em}}6{a}^{3}{c}^{7}\ne 0,\text{\hspace{0.17em}}\text{then}\text{\hspace{0.17em}}{\left(6{a}^{3}{c}^{7}\right)}^{0}=1& \text{Recall}\text{\hspace{0.17em}}\text{that}\text{\hspace{0.17em}}{x}^{0}=1\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}x\ne 0.\end{array}$

$\begin{array}{ll}{\left[2{\left(x+1\right)}^{4}\right]}^{6}\hfill & ={2}^{6}{\left(x+1\right)}^{24}\hfill \\ \hfill & =64{\left(x+1\right)}^{24}\hfill \end{array}$

## Practice set b

Make use of either or both the power rule for products and the power rule for powers to simplify each expression.

${\left(ax\right)}^{4}$

${a}^{4}{x}^{4}$

${\left(3bxy\right)}^{2}$

$9{b}^{2}{x}^{2}{y}^{2}$

${\left[4t\left(s-5\right)\right]}^{3}$

$64{t}^{3}{\left(s-5\right)}^{3}$

${\left(9{x}^{3}{y}^{5}\right)}^{2}$

$81{x}^{6}{y}^{10}$

${\left(1{a}^{5}{b}^{8}{c}^{3}d\right)}^{6}$

${a}^{30}{b}^{48}{c}^{18}{d}^{6}$

${\left[\left(a+8\right)\left(a+5\right)\right]}^{4}$

${\left(a+8\right)}^{4}{\left(a+5\right)}^{4}$

${\left[\left(12{c}^{4}{u}^{3}{\left(w-3\right)}^{2}\right]}^{5}$

${12}^{5}{c}^{20}{u}^{15}{\left(w-3\right)}^{10}$

${\left[10{t}^{4}{y}^{7}{j}^{3}{d}^{2}{v}^{6}{n}^{4}{g}^{8}{\left(2-k\right)}^{17}\right]}^{4}$

${10}^{4}{t}^{16}{y}^{28}{j}^{12}{d}^{8}{v}^{24}{n}^{16}{g}^{32}{\left(2-k\right)}^{68}$

${\left({x}^{3}{x}^{5}{y}^{2}{y}^{6}\right)}^{9}$

${\left({x}^{8}{y}^{8}\right)}^{9}={x}^{72}{y}^{72}$

${\left({10}^{6}\cdot {10}^{12}\cdot {10}^{5}\right)}^{10}$

${10}^{230}$

## The power rule for quotients

The following example suggests a rule for raising a quotient to a power.

${\left(\frac{a}{b}\right)}^{3}=\frac{a}{b}\cdot \frac{a}{b}\cdot \frac{a}{b}=\frac{a\cdot a\cdot a}{b\cdot b\cdot b}=\frac{{a}^{3}}{{b}^{3}}$

## Power rule for quotients

If $x$ and $y$ are real numbers and $n$ is a natural number,
${\left(\frac{x}{y}\right)}^{n}=\frac{{x}^{n}}{{y}^{n}},\text{\hspace{0.17em}}\text{\hspace{0.17em}}y\ne 0$

To raise a quotient to a power, distribute the exponent to both the numerator and denominator.

## Sample set c

Make use of the power rule for quotients, the power rule for products, the power rule for powers, or a combination of these rules to simplify each expression. All exponents are natural numbers.

${\left(\frac{x}{y}\right)}^{6}=\frac{{x}^{6}}{{y}^{6}}$

${\left(\frac{a}{c}\right)}^{2}=\frac{{a}^{2}}{{c}^{2}}$

${\left(\frac{2x}{b}\right)}^{4}=\frac{{\left(2x\right)}^{4}}{{b}^{4}}=\frac{{2}^{4}{x}^{4}}{{b}^{4}}=\frac{16{x}^{4}}{{b}^{4}}$

${\left(\frac{{a}^{3}}{{b}^{5}}\right)}^{7}=\frac{{\left({a}^{3}\right)}^{7}}{{\left({b}^{5}\right)}^{7}}=\frac{{a}^{21}}{{b}^{35}}$

$\begin{array}{ccc}{\left(\frac{3{c}^{4}{r}^{2}}{{2}^{3}{g}^{5}}\right)}^{3}=\frac{{3}^{3}{c}^{12}{r}^{6}}{{2}^{9}{g}^{15}}=\frac{27{c}^{12}{r}^{6}}{{2}^{9}{g}^{15}}& \text{or}& \frac{27{c}^{12}{r}^{6}}{512{g}^{15}}\end{array}$

${\left[\frac{\left(a-2\right)}{\left(a+7\right)}\right]}^{4}=\frac{{\left(a-2\right)}^{4}}{{\left(a+7\right)}^{4}}$

${\left[\frac{6x{\left(4-x\right)}^{4}}{2a{\left(y-4\right)}^{6}}\right]}^{2}=\frac{{6}^{2}{x}^{2}{\left(4-x\right)}^{8}}{{2}^{2}{a}^{2}{\left(y-4\right)}^{12}}=\frac{36{x}^{2}{\left(4-x\right)}^{8}}{4{a}^{2}{\left(y-4\right)}^{12}}=\frac{9{x}^{2}{\left(4-x\right)}^{8}}{{a}^{2}{\left(y-4\right)}^{12}}$

$\begin{array}{llll}{\left(\frac{{a}^{3}{b}^{5}}{{a}^{2}b}\right)}^{3}\hfill & =\hfill & {\left({a}^{3-2}{b}^{5-1}\right)}^{3}\hfill & \text{We}\text{\hspace{0.17em}}\text{can}\text{\hspace{0.17em}}\text{simplify}\text{\hspace{0.17em}}\text{within}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{parentheses}\text{.}\text{\hspace{0.17em}}\text{We}\hfill \\ \hfill & \hfill & \hfill & \text{have}\text{\hspace{0.17em}}\text{a}\text{\hspace{0.17em}}\text{rule}\text{\hspace{0.17em}}\text{that}\text{\hspace{0.17em}}\text{tells}\text{\hspace{0.17em}}\text{us}\text{\hspace{0.17em}}\text{to}\text{\hspace{0.17em}}\text{proceed}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{way}\text{.}\hfill \\ \hfill & =\hfill & {\left(a{b}^{4}\right)}^{3}\hfill & \hfill \\ \hfill & =\hfill & {a}^{3}{b}^{12}\hfill & \hfill \\ {\left(\frac{{a}^{3}{b}^{5}}{{a}^{2}b}\right)}^{3}\hfill & =\hfill & \frac{{a}^{9}{b}^{15}}{{a}^{6}{b}^{3}}={a}^{9-6}{b}^{15-3}={a}^{3}{b}^{12}\hfill & \text{We}\text{\hspace{0.17em}}\text{could}\text{\hspace{0.17em}}\text{have}\text{\hspace{0.17em}}\text{actually}\text{\hspace{0.17em}}\text{used}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{power}\text{\hspace{0.17em}}\text{rule}\text{\hspace{0.17em}}\text{for}\hfill \\ \hfill & \hfill & \hfill & \text{quotients}\text{\hspace{0.17em}}\text{first}\text{.}\text{\hspace{0.17em}}\text{Distribute}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{exponent,}\text{\hspace{0.17em}}\text{then}\hfill \\ \hfill & \hfill & \hfill & \text{simplify}\text{\hspace{0.17em}}\text{using}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{other}\text{\hspace{0.17em}}\text{rules}\text{.}\hfill \\ \hfill & \hfill & \hfill & \text{It}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{probably}\text{\hspace{0.17em}}\text{better,}\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{sake}\text{\hspace{0.17em}}\text{of}\text{\hspace{0.17em}}\text{consistency,}\hfill \\ \hfill & \hfill & \hfill & \text{to}\text{\hspace{0.17em}}\text{work}\text{\hspace{0.17em}}\text{inside}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{parentheses}\text{\hspace{0.17em}}\text{first.}\hfill \end{array}$

${\left(\frac{{a}^{r}{b}^{s}}{{c}^{t}}\right)}^{w}=\frac{{a}^{rw}{b}^{sw}}{{c}^{tw}}\text{\hspace{0.17em}}$

## Practice set c

Make use of the power rule for quotients, the power rule for products, the power rule for powers, or a combination of these rules to simplify each expression.

${\left(\frac{a}{c}\right)}^{5}$

$\frac{{a}^{5}}{{c}^{5}}$

${\left(\frac{2x}{3y}\right)}^{3}$

$\frac{8{x}^{3}}{27{y}^{3}}$

${\left(\frac{{x}^{2}{y}^{4}{z}^{7}}{{a}^{5}b}\right)}^{9}$

$\frac{{x}^{18}{y}^{36}{z}^{63}}{{a}^{45}{b}^{9}}$

${\left[\frac{2{a}^{4}\left(b-1\right)}{3{b}^{3}\left(c+6\right)}\right]}^{4}$

$\frac{16{a}^{16}{\left(b-1\right)}^{4}}{81{b}^{12}{\left(c+6\right)}^{4}}$

${\left(\frac{8{a}^{3}{b}^{2}{c}^{6}}{4{a}^{2}b}\right)}^{3}$

$8{a}^{3}{b}^{3}{c}^{18}$

${\left[\frac{{\left(9+w\right)}^{2}}{{\left(3+w\right)}^{5}}\right]}^{10}$

$\frac{{\left(9+w\right)}^{20}}{{\left(3+w\right)}^{50}}$

${\left[\frac{5{x}^{4}\left(y+1\right)}{5{x}^{4}\left(y+1\right)}\right]}^{6}$

$1,\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}{x}^{4}\left(y+1\right)\ne 0$

${\left(\frac{16{x}^{3}{v}^{4}{c}^{7}}{12{x}^{2}v{c}^{6}}\right)}^{0}$

$1,\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}{x}^{2}v{c}^{6}\ne 0$

## Exercises

Use the power rules for exponents to simplify the following problems. Assume that all bases are nonzero and that all variable exponents are natural numbers.

${\left(ac\right)}^{5}$

${a}^{5}{c}^{5}$

${\left(nm\right)}^{7}$

${\left(2a\right)}^{3}$

$8{a}^{3}$

${\left(2a\right)}^{5}$

${\left(3xy\right)}^{4}$

$81{x}^{4}{y}^{4}$

${\left(2xy\right)}^{5}$

${\left(3ab\right)}^{4}$

$81{a}^{4}{b}^{4}$

${\left(6mn\right)}^{2}$

${\left(7{y}^{3}\right)}^{2}$

$49{y}^{6}$

${\left(3{m}^{3}\right)}^{4}$

${\left(5{x}^{6}\right)}^{3}$

$125{x}^{18}$

${\left(5{x}^{2}\right)}^{3}$

${\left(10{a}^{2}b\right)}^{2}$

$100{a}^{4}{b}^{2}$

${\left(8{x}^{2}{y}^{3}\right)}^{2}$

${\left({x}^{2}{y}^{3}{z}^{5}\right)}^{4}$

${x}^{8}{y}^{12}{z}^{20}$

${\left(2{a}^{5}{b}^{11}\right)}^{0}$

${\left({x}^{3}{y}^{2}{z}^{4}\right)}^{5}$

${x}^{15}{y}^{10}{z}^{20}$

${\left({m}^{6}{n}^{2}{p}^{5}\right)}^{5}$

${\left({a}^{4}{b}^{7}{c}^{6}{d}^{8}\right)}^{8}$

${a}^{32}{b}^{56}{c}^{48}{d}^{64}$

${\left({x}^{2}{y}^{3}{z}^{9}{w}^{7}\right)}^{3}$

${\left(9x{y}^{3}\right)}^{0}$

1

${\left(\frac{1}{2}{f}^{2}{r}^{6}{s}^{5}\right)}^{4}$

${\left(\frac{1}{8}{c}^{10}{d}^{8}{e}^{4}{f}^{9}\right)}^{2}$

$\frac{1}{64}{c}^{20}{d}^{16}{e}^{8}{f}^{18}$

${\left(\frac{3}{5}{a}^{3}{b}^{5}{c}^{10}\right)}^{3}$

${\left(xy\right)}^{4}\left({x}^{2}{y}^{4}\right)$

${x}^{6}{y}^{8}$

${\left(2{a}^{2}\right)}^{4}{\left(3{a}^{5}\right)}^{2}$

${\left({a}^{2}{b}^{3}\right)}^{3}{\left({a}^{3}{b}^{3}\right)}^{4}$

${a}^{18}{b}^{21}$

${\left({h}^{3}{k}^{5}\right)}^{2}{\left({h}^{2}{k}^{4}\right)}^{3}$

${\left({x}^{4}{y}^{3}z\right)}^{4}{\left({x}^{5}y{z}^{2}\right)}^{2}$

${x}^{26}{y}^{14}{z}^{8}$

${\left(a{b}^{3}{c}^{2}\right)}^{5}{\left({a}^{2}{b}^{2}c\right)}^{2}$

$\frac{{\left(6{a}^{2}{b}^{8}\right)}^{2}}{{\left(3a{b}^{5}\right)}^{2}}$

$4{a}^{2}{b}^{6}$

$\frac{{\left({a}^{3}{b}^{4}\right)}^{5}}{{\left({a}^{4}{b}^{4}\right)}^{3}}$

$\frac{{\left({x}^{6}{y}^{5}\right)}^{3}}{{\left({x}^{2}{y}^{3}\right)}^{5}}$

${x}^{8}$

$\frac{{\left({a}^{8}{b}^{10}\right)}^{3}}{{\left({a}^{7}{b}^{5}\right)}^{3}}$

$\frac{{\left({m}^{5}{n}^{6}{p}^{4}\right)}^{4}}{{\left({m}^{4}{n}^{5}p\right)}^{4}}$

${m}^{4}{n}^{4}{p}^{12}$

$\frac{{\left({x}^{8}{y}^{3}{z}^{2}\right)}^{5}}{{\left({x}^{6}yz\right)}^{6}}$

$\frac{{\left(10{x}^{4}{y}^{5}{z}^{11}\right)}^{3}}{{\left(x{y}^{2}\right)}^{4}}$

$1000{x}^{8}{y}^{7}{z}^{33}$

$\frac{\left(9{a}^{4}{b}^{5}\right)\left(2{b}^{2}c\right)}{\left(3{a}^{3}b\right)\left(6bc\right)}$

$\frac{{\left(2{x}^{3}{y}^{3}\right)}^{4}{\left(5{x}^{6}{y}^{8}\right)}^{2}}{{\left(4{x}^{5}{y}^{3}\right)}^{2}}$

$25{x}^{14}{y}^{22}$

${\left(\frac{3x}{5y}\right)}^{2}$

${\left(\frac{3ab}{4xy}\right)}^{3}$

$\frac{27{a}^{3}{b}^{3}}{64{x}^{3}{y}^{3}}$

${\left(\frac{{x}^{2}{y}^{2}}{2{z}^{3}}\right)}^{5}$

${\left(\frac{3{a}^{2}{b}^{3}}{{c}^{4}}\right)}^{3}$

$\frac{27{a}^{6}{b}^{9}}{{c}^{12}}$

${\left(\frac{{4}^{2}{a}^{3}{b}^{7}}{{b}^{5}{c}^{4}}\right)}^{2}$

${\left[\frac{{x}^{2}{\left(y-1\right)}^{3}}{\left(x+6\right)}\right]}^{4}$

$\frac{{x}^{8}{\left(y-1\right)}^{12}}{{\left(x+6\right)}^{4}}$

${\left({x}^{n}{t}^{2m}\right)}^{4}$

$\frac{{\left({x}^{n+2}\right)}^{3}}{{x}^{2n}}$

${x}^{n+6}$

${\left(xy\right)}^{△}$

$\frac{{4}^{3}{a}^{\Delta }{a}^{\square }}{4{a}^{\nabla }}$

${\left(\frac{4{x}^{\Delta }}{2{y}^{\nabla }}\right)}^{\square }$

## Exercises for review

( [link] ) Is there a smallest integer? If so, what is it?

no

( [link] ) Use the distributive property to expand $5a\left(2x+8\right)$ .

( [link] ) Find the value of $\frac{{\left(5-3\right)}^{2}+{\left(5+4\right)}^{3}+2}{{4}^{2}-2\cdot 5-1}$ .

147

( [link] ) Assuming the bases are not zero, find the value of $\left(4{a}^{2}{b}^{3}\right)\left(5a{b}^{4}\right)$ .

( [link] ) Assuming the bases are not zero, find the value of $\frac{36{x}^{10}{y}^{8}{z}^{3}{w}^{0}}{9{x}^{5}{y}^{2}z}$ .

$4{x}^{5}{y}^{6}{z}^{2}$

What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform.