# 9.1 Least squares, calculator work, correlation coefficients

 Page 1 / 2

## The method of least squares

We now come to a more accurate method of finding the line of best-fit. The method is very simple. Suppose we guess a line of best-fit. Then at at every data point, we find the distance between the data point and the line. If the line fitted the data perfectly, this distance should be zero for all the data points. The worse the fit, the larger the differences. We then square each of these distances, and add them all together.

The best-fit line is then the line that minimises the sum of the squared distances.

Suppose we have a data set of $n$ points $\left\{\left({x}_{1};{y}_{1}\right),\left({x}_{2};{y}_{2}\right),...,\left({x}_{n},{y}_{n}\right)\right\}$ . We also have a line $f\left(x\right)=mx+c$ that we are trying to fit to the data. The distance between the first data point and the line, for example, is

$\text{distance}={y}_{1}-f\left(x\right)={y}_{1}-\left(mx+c\right)$

We now square each of these distances and add them together. Lets call this sum $S\left(m,c\right)$ . Then we have that

$\begin{array}{ccc}\hfill S\left(m,c\right)& =& {\left({y}_{1}-f\left({x}_{1}\right)\right)}^{2}+{\left({y}_{2}-f\left({x}_{2}\right)\right)}^{2}+...+{\left({y}_{n}-f\left({x}_{n}\right)\right)}^{2}\hfill \\ & =& \sum _{i=1}^{n}{\left({y}_{i}-f\left({x}_{i}\right)\right)}^{2}\hfill \end{array}$

Thus our problem is to find the value of $m$ and $c$ such that $S\left(m,c\right)$ is minimised. Let us call these minimising values ${m}_{0}$ and ${c}_{0}$ . Then the line of best-fit is $f\left(x\right)={m}_{0}x+{c}_{0}$ . We can find ${m}_{0}$ and ${c}_{0}$ using calculus, but it is tricky, and we will just give you the result, which is that

$\begin{array}{ccc}\hfill {m}_{0}& =& \frac{n{\sum }_{i=1}^{n}{x}_{i}{y}_{i}-{\sum }_{i=1}^{n}{x}_{i}{\sum }_{i=1}^{n}{y}_{i}}{n{\sum }_{i=1}^{n}{\left({x}_{i}\right)}^{2}-{\left({\sum }_{i=1}^{n},{x}_{i}\right)}^{2}}\hfill \\ \hfill {c}_{0}& =& \frac{1}{n}\sum _{i=1}^{n}{y}_{i}-\frac{{m}_{0}}{n}\sum _{i=0}^{n}{x}_{i}=\overline{y}-{m}_{0}\overline{x}\hfill \end{array}$

In the table below, we have the records of the maintenance costs in Rands, compared with the age of the appliance in months. We have data for 5 appliances.

 appliance 1 2 3 4 5 age ( $x$ ) 5 10 15 20 30 cost ( $y$ ) 90 140 250 300 380

Find the line of best fit using the method of least squares.

1.  appliance $x$ $y$ $xy$ ${x}^{2}$ 1 5 90 450 25 2 10 140 1400 100 3 15 250 3750 225 4 20 300 6000 400 5 30 380 11400 900 Total 80 1160 23000 1650
2. $\begin{array}{ccc}\hfill {m}_{0}& =& \frac{n\sum xy-\sum x\sum y}{n\sum {x}^{2}-{\left(\sum ,x\right)}^{2}}=\frac{5×23000-80×1160}{5×1650-{80}^{2}}=12\hfill \\ \hfill {c}_{0}& =& \overline{y}-b\overline{x}=\frac{1160}{5}-\frac{12×80}{5}=40\hfill \\ & \therefore & \underline{\stackrel{^}{y}=40+12x}\hfill \end{array}$

## Using a calculator

Find a regression equation for the following data:

 Days ( $x$ ) 1 2 3 4 5 Growth in m ( $y$ ) 1,00 2,50 2,75 3,00 3,50
1. Using your calculator, change the mode from normal to “Stat $xy$ ”. This mode enables you to type in bivariate data.

2. Key in the data as follows:

 1 $\left(x,y\right)$ 1 DATA $n$ = 1 2 $\left(x,y\right)$ 2,5 DATA $n$ = 2 3 $\left(x,y\right)$ 2,75 DATA $n$ = 3 4 $\left(x,y\right)$ 3,0 DATA $n$ = 4 5 $\left(x,y\right)$ 3,5 DATA $n$ = 5
3. Ask for the values of the regression coefficients $a$ and $b$ .

 RCL $a$ gives $a=$ 0,9 RCL $b$ gives $b=$ 0,55
$\therefore \stackrel{^}{y}=0,9+0,55x$

Using a calculator determine the least squares line of best fit for the following data set of marks.

 Learner 1 2 3 4 5 Chemistry (%) 52 55 86 71 45 Accounting (%) 48 64 95 79 50

For a Chemistry mark of 65%, what mark does the least squares line predict for Accounting?

1. Switch on the calculator. Press [MODE] and then select STAT by pressing [2]. The following screen will appear:

 1 1-VAR 2 A + BX 3 $_$ + CX ${}^{2}$ 4 ln X 5 e $\stackrel{^}{}$ X 6 A . B $\stackrel{^}{}$ X 7 A . X $\stackrel{^}{}$ B 8 1/X

Now press [2] for linear regression. Your screen should look something like this:

 x y 1 2 3
2. Press [52] and then [=]to enter the first mark under $x$ . Then enter the other values, in the same way, for the $x$ -variable (the Chemistry marks) in the order in which they are given in the data set. Then move the cursor across and up and enter 48 under $y$ opposite 52 in the $x$ -column. Continue to enter the other $y$ -values (the Accounting marks) in order so that they pair off correctly with the corresponding $x$ -values.

 x y 1 52 2 55 3

Then press [AC]. The screen clears but the data remains stored.

 1: Type 2: Data 3: Edit 4: Sum 5: Var 6: MinMax 7: Reg

Now press [SHIFT][1]to get the stats computations screen shown below. Choose Regression by pressing [7].

 1: A 2: B 3: r 4: $\stackrel{^}{x}$ 5: $\stackrel{^}{y}$
1. Press [1] and [=]to get the value of the $y$ -intercept, $a=-5,065..=-5,07$ (to 2 d.p.) Finally, to get the slope, use the following key sequence: [SHIFT][1][7][2][=]. The calculator gives $b=1,169..=1,17$ (to 2 d.p.) The equation of the line of regression is thus: $\stackrel{^}{y}=-5,07+1,17x$
2. Press [AC][65][SHIFT][1][7][5][=] This gives a (predicted) Accounting mark of $\stackrel{^}{}=70,94=71$ %

where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
Got questions? Join the online conversation and get instant answers!