<< Chapter < Page Chapter >> Page >
  • Describe the meaning of the Mean Value Theorem for Integrals.
  • State the meaning of the Fundamental Theorem of Calculus, Part 1.
  • Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
  • State the meaning of the Fundamental Theorem of Calculus, Part 2.
  • Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
  • Explain the relationship between differentiation and integration.

In the previous two sections, we looked at the definite integral and its relationship to the area under the curve of a function. Unfortunately, so far, the only tools we have available to calculate the value of a definite integral are geometric area formulas and limits of Riemann sums, and both approaches are extremely cumbersome. In this section we look at some more powerful and useful techniques for evaluating definite integrals.

These new techniques rely on the relationship between differentiation and integration. This relationship was discovered and explored by both Sir Isaac Newton and Gottfried Wilhelm Leibniz (among others) during the late 1600s and early 1700s, and it is codified in what we now call the Fundamental Theorem of Calculus , which has two parts that we examine in this section. Its very name indicates how central this theorem is to the entire development of calculus.

Isaac Newton ’s contributions to mathematics and physics changed the way we look at the world. The relationships he discovered, codified as Newton’s laws and the law of universal gravitation, are still taught as foundational material in physics today, and his calculus has spawned entire fields of mathematics. To learn more, read a brief biography of Newton with multimedia clips.

Before we get to this crucial theorem, however, let’s examine another important theorem, the Mean Value Theorem for Integrals, which is needed to prove the Fundamental Theorem of Calculus.

The mean value theorem for integrals

The Mean Value Theorem for Integrals states that a continuous function on a closed interval takes on its average value at the same point in that interval. The theorem guarantees that if f ( x ) is continuous, a point c exists in an interval [ a , b ] such that the value of the function at c is equal to the average value of f ( x ) over [ a , b ] . We state this theorem mathematically with the help of the formula for the average value of a function that we presented at the end of the preceding section.

The mean value theorem for integrals

If f ( x ) is continuous over an interval [ a , b ] , then there is at least one point c [ a , b ] such that

f ( c ) = 1 b a a b f ( x ) d x .

This formula can also be stated as

a b f ( x ) d x = f ( c ) ( b a ) .

Proof

Since f ( x ) is continuous on [ a , b ] , by the extreme value theorem (see Maxima and Minima ), it assumes minimum and maximum values— m and M , respectively—on [ a , b ] . Then, for all x in [ a , b ] , we have m f ( x ) M . Therefore, by the comparison theorem (see The Definite Integral ), we have

m ( b a ) a b f ( x ) d x M ( b a ) .

Dividing by b a gives us

m 1 b a a b f ( x ) d x M .

Since 1 b a a b f ( x ) d x is a number between m and M , and since f ( x ) is continuous and assumes the values m and M over [ a , b ] , by the Intermediate Value Theorem (see Continuity ), there is a number c over [ a , b ] such that

Questions & Answers

find the integral of tan
Gagan Reply
Differentiate each from the first principle. y=x,y=1/x
Abubakar Reply
I need help with calculus. Anyone help me.
Macquitasha Reply
yes
Pradip
formula for radius of curvature
mpradeepa Reply
Hi
Usman
beautiful name usman
Fund
really
Usman
Hi guys
Macquitasha
Hello everyone here
abdulazeez
good day!
joel
hii
Shreya
You are welcome
abdulazeez
shreya
ashif
thanks
joel
hello Sar aapse Kuchh calculate ke sawal poochhne Hain
Sumit
integration seems interesting
Fund Reply
it's like a multiple oparation in just one.
Efrain
Definitely integration
ROHIT Reply
tangent line at a point/range on a function f(x) making f'(x)
Luis
Principles of definite integration?
ROHIT
For tangent they'll usually give an x='s value. In that case, solve for y, keep the ordered pair. then find f(x) prime. plug the given x value into the prime and the solution is the slope of the tangent line. Plug the ordered pair into the derived function in y=mx+b format as x and y to solve for B
Anastasia
parcing an area trough a function f(x)
Efrain
Find the length of the arc y = x^2 over 3 when x = 0 and x = 2.
Jade Reply
integrate x ln dx from 1 to e
Sourav Reply
application of function
azam Reply
how i can need help
azam Reply
what ?
Bunyim
defination of math
azam
application of function
azam
please reply fast
azam
what is a circle
Ronnie
math is the science, logic, shape and arrangement
Boadi
a circle is a hole shape
Jianna
a whole circumference have equal distance from one point
azam
please tell me books which write on function
azam
HE is a Nigerian, wrote the book INTEGRATED MATHEMATICS...CHECK IT OUT!!
Agboke
Woah this is working again
Bruce
show that the f^n f(x)=|x-1| is not differentiable at x=1.
Mohit Reply
is there any solution manual to calculuse 1 for Gilbert Strang ?
Eng Reply
I am beginner
Abdul
I am a beginner
ephraim
l am also beginner
Badar
just began, bois!!
Luis
Hello
abdulazeez
I am newer
abdulazeez
Hey
Bonface
Hi
Jianna
what is mathematics
Henry Reply
logical usage of numbers
Leo
thanks
Henry
you welcome
Leo
what's career can one specialize in by doing pure maths
Lucy
Lucy Omollo...... The World is Yours by specializing in pure math. Analytics, Financial engineering ,programming, education, combinatorial mathematics, Game Theory. your skill-set will be like water a necessary element of survival.
David
***onetonline.org/find/descriptor/result/1.A.1.c.1
Bruce
mathematics seems to be anthropocentric deductive reasoning and a little high order logic. I only say this because I can only find two things going on which is infinitely smaller than 0 and anything over 1
David
More comprehensive list here: ***onetonline.org/find/descriptor/result/1.A.1.c.1?a=1
Bruce
so how can we differentiate inductive reasoning and deductive reasoning
Henry
thanks very much Mr David
Henry
hi everyone
Sabir
is there anyone who can guide me in learning the mathematics easily
Sabir
Hi Sabir first step of learning mathematics is by falling in love with it and secondly, watch videos on simple algebra then read and solved problems on it
Leo
yes sabir just do every time practice that is the solution
Henry
it will be work over to you ,u know how mind work ,it prossed the information easily when u are practising regularly
Henry
in calculas,does a self inverse function exist
Lucy
I'm lost in all functions need help
Jonathan
hello i need help in rate of change
Moises
***questioncove.com/invite/QzOQGp
Bruce
Hello
hassan
hi
MJ
hi
Masaniel
so difficult
Masaniel
hello my name is Charles Christian
Charles Reply
Hello Charles
Jianna
Hi! I am Dante
Dante
Hi! I'm ashwini
ashwini
halĺo
Roben
Hi
Leo
hello leo
Agboke
can anyone prove why AU(BnC)=(AUB)n(AUC)
Agboke
this one it can't be proven these are assumption
Henry
hello agboke there is no proof for such
Leo
Hi
Adewale
hi this is wasim
wasim
can anybody put me through flowchart and algorithm here
Agboke
download introductory books and read
Leo
***soundcloud.com/etroid-izza/sets/sadbwoicarepackage
Luis
music while you math
Luis
dy/dx= 1-cos4x/sin4x
Alma Reply
what is the derivatives of 1-cos4x/sin4x
Alma
what is the derivate of Sec2x
Johar
d/dx(sec(2 x)) = 2 tan(2 x) sec(2 x)
AYAN
who knows more about mathematical induction?
Agboke
who know anything about the whole calculus thing 🤔 its killing me 😶
matbakh
Yes
Dadi
hii
Gagan
Practice Key Terms 4

Get the best Calculus volume 1 course in your pocket!





Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask