<< Chapter < Page Chapter >> Page >

In groups of 4-5, discuss the following questions:

  • Think about some other examples where scientific knowledge has changed because of new ideas and discoveries:
    • What were these new ideas?
    • Were they controversial? If so, why?
    • What role (if any) did technology play in developing these new ideas?
    • How have these ideas affected the way we understand the world?
  • Many people come up with their own ideas about how the world works. The same is true in science. So how do we, and other scientists, know what to believe and what not to? How do we know when new ideas are 'good' science or 'bad' science? In your groups, discuss some of the things that would need to be done to check whether a new idea or theory was worth listening to, or whether it was not.
  • Present your ideas to the rest of the class.

Electron configuration

The energy of electrons

You will remember from our earlier discussions that an atom is made up of a central nucleus, which contains protons and neutrons and that this nucleus is surrounded by electrons. Although these electrons all have the same charge and the same mass, each electron in an atom has a different amount of energy . Electrons that have the lowest energy are found closest to the nucleus where the attractive force of the positively charged nucleus is the greatest. Those electrons that have higher energy, and which are able to overcome the attractive force of the nucleus, are found further away.

Energy quantisation and line emission spectra (not in caps, included for completeness)

If the energy of an atom is increased (for example when a substance is heated), the energy of the electrons inside the atom can be increased (when an electron has a higher energy than normal it is said to be "excited"). For the excited electron to go back to its original energy (called the ground state), it needs to release energy. It releases energy by emitting light. If one heats up different elements, one will see that for each element, light is emitted only at certain frequencies (or wavelengths). Instead of a smooth continuum of frequencies, we see lines (called emission lines) at particular frequencies. These frequencies correspond to the energy of the emitted light. If electrons could be excited to any energy and lose any amount of energy, there would be a continuous spread of light frequencies emitted. However, the sharp lines we see mean that there are only certain particular energies that an electron can be excited to, or can lose, for each element.

You can think of this like going up a flight of steps: you can't lift your foot by any amount to go from the ground to the first step. If you lift your foot too low you'll bump into the step and be stuck on the ground level. You have to lift your foot just the right amount (the height of the step) to go to the next step, and so on. The same goes for electrons and the amount of energy they can have. This is called quantisation of energy because there are only certain quantities of energy that an electron can have in an atom. Like steps, we can think of these quantities as energy levels in the atom. The energy of the light released when an electron drops down from a higher energy level to a lower energy level is the same as the difference in energy between the two levels.

Questions & Answers

Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
hi
Loga
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
What makes metals better to use as wires than non-metals? (please link to bonding type)??? HELP
Yash Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Chemistry grade 10 [caps]. OpenStax CNX. Jun 13, 2011 Download for free at http://cnx.org/content/col11303/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry grade 10 [caps]' conversation and receive update notifications?

Ask