<< Chapter < Page
  Digital signal processing - dsp     Page 14 / 14
Chapter >> Page >

Case C output in numeric form

The output produced by the code in Listing 7 is shown in Figure 14 .

Figure 14. Case C output in numeric form.
Case C Real:0.0 0.999 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0imag: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

If you plot the real and imaginary input values from Listing 7 , you will see that they match the input values in Figure 13 . If you plot the real and imaginary output values in Figure 14 , you will see that they match the output values shown in Figure 13 .

Listing 7 signals the end of the main method.

The display method

Listing 8 shows the code for a simple method named display . The purpose of the display method is to display a real series and an imaginary series, each contained in an incoming array object of type double . The double values are truncated to no more than four digits before displaying them. Then they aredisplayed on a single line.

Listing 8. The display method.
static void display(double[] real,double[] imag){System.out.println("Real: "); for(int cnt=0;cnt<real.length;cnt++){ System.out.print(((int)(1000.0*real[cnt])) /1000.0 + " ");}//end for loop System.out.println();System.out.println("imag: "); for(int cnt=0;cnt<imag.length;cnt++){ System.out.print(((int)(1000.0*imag[cnt])) /1000.0 + " ");}//end for loop System.out.println();}//end display }//end class Fft02

Listing 8 also signals the end of the controlling class named Fft02 .

Run the program

I encourage you to copy and compile the program that you will find in Listing 9 . Experiment with different complex input series.

I also encourage you to download the applet from (External Link) or from here and experiment with it as well. Compare the numeric output produced by this program with the graphic output produced by theapplet.

Finally, I encourage you to examine the source code for the applet. Concentrate on that portion of the source code that performs the FFT. Hopefully,what you have learned in this module will make it easier for you to understand the source code for the FFT.

Summary

In this module, I have explained some of the underlying signal processing concepts that make the FFT possible. I illustrated those concepts in a programdesigned specifically to be as simple as possible while still illustrating the concepts.

Now that you understand those concepts, you should be able to better understand explanations of the mechanics of the FFT algorithm that appear onvarious websites.

Complete program listings

A complete listing of the program is provided in Listing 9 below.

Listing 9. Fft02.java.
/*File Fft02.java Copyright 2004, R.G.Baldwin Rev 4/30/04This program DOES NOT implement an FFT algorithm. Rather,this program illustrates the underlying FFT concepts in a form that is much more easilyunderstood than is normally the case with an actual FFT algorithm. The steps in theimplementation of a typical FFT algorithm are as follows:1. Decompose an N-point complex series into N individual complex values, each consisting of asingle complex sample. The order of the decomposition in an FFT algorithm is rathercomplicated. It is this order of decomposition, and the order of the subsequent recombination oftransform results that causes the FFT to be so fast. It is also that order that makes thealgorithm somewhat difficult to understand. This program does not implement that order ofdecomposition and recombination. 2. Calculate the transform of each of the Ncomplex samples, treating each as if it were located at the beginning of the complex series.This step is trivial. The real part of the transform of a single complex sample located atthe beginning of the series is a complex constant whose values are proportional to the real andimaginary values that make up the complex sample. 3. Correct each of the N transform results toreflect the actual position of the complex sample in the series. This involves the application ofsine and cosine curves to the real and imaginary parts of the transform. This step is usuallycombined with the recombination step that follows.4. Recombine the N transform results into a single transform result that represents thetransform of the original complex series. This is a very complicated operation in a real FFTalgorithm. It must reverse the order of decomposition in the first step describedearlier. As mentioned earlier, it is the order of the decomposition and subsequent recombinationthat minimizes the arithmetic operations required and gives the FFT its tremendous speed. Thisprogram does not implement the special order of decomposition and recombination used in an actualFFT algorithm. This program creates three separate complexseries, applies the processes listed above to each of those series, and displays the results onthe screen. No attempt is made to manage the decomposition and the subsequent recombination inthe manner of a true FFT algorithm. Therefore, this program is designed to illustrate theprocesses involved, and is not designed to provide the speed of a true FFT algorithm.The decomposition process in this program takes the complex samples in the order that they appearin the input complex series. The transform of each complex sample is simplythe sample itself. This is the result that would be obtained by actually computing the transformof the complex sample if the sample were the first sample in the series.The transform result for each complex sample is then corrected by applying sine and cosine curvesto reflect the actual position of the complex sample within the complex series.The real and imaginary parts of the corrected transform results are then added to accumulatorsthat are used to accumulate the corrected real and imaginary parts from the correctedtransforms for all of the individual complex samples.Once the real and imaginary parts have been accumulated for all of the complex samples, thereal part of the accumulator represents the real part of the transform of the original complexseries. The imaginary part of the accumulator represents the imaginary part of the transform ofthe original complex series. Tested using SDK 1.4.2 under WinXP************************************************/ class Fft02{public static void main(String[] args){//Instantiate an object that will implement // the processes used in an FFT, but not in// the order required by an FFT algorithm. Transform transform = new Transform();//Prepare the input data and the output // arrays for Case A. Note that for this// case, the input complex series contains // non-zero values only in the real part.// Also, most of the values in the real part // are zero.System.out.println("Case A"); double[]realInA = {0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1};double[] imagInA ={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; double[]realOutA = new double[16];double[] imagOutA = new double[16]; //Perform the transform and display the// transformed results for the original // complex series.transform.doIt(realInA,imagInA,2.0,realOutA, imagOutA);display(realOutA,imagOutA); //Process and display the results for Case B.// Note that the input complex series // contains non-zero values in both the real// and imaginary parts. However, most of the // values in the real and imaginary parts are// zero. System.out.println("\nCase B");double[] realInB ={0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; double[]imagInB = {0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1};double[] realOutB = new double[16]; double[]imagOutB = new double[16];transform.doIt(realInB,imagInB,2.0,realOutB, imagOutB);display(realOutB,imagOutB); //Process and display the results for Case C.// Note that the input complex series // contains non-zero values in both the real// and imaginary parts. In addition, very // few of the values in the complex series// have a value of zero. (The values of the // complex samples actually describe a cosine// curve and a sine curve.) System.out.println("\nCase C");double[] realInC ={1.0,0.923,0.707,0.382,0.0,-0.382,-0.707, -0.923,-1.0,-0.923,-0.707,-0.382,0.0,0.382,0.707,0.923}; double[]imagInC = {0.0,-0.382,-0.707,-0.923,-1.0,-0.923,-0.707,-0.382,0.0,0.382,0.707,0.923, 1.0,0.923,0.707,0.382};double[] realOutC = new double[16]; double[]imagOutC = new double[16];transform.doIt(realInC,imagInC,16.0,realOutC, imagOutC);display(realOutC,imagOutC); }//end main//===========================================// //The purpose of this method is to display// a real series and an imaginary series, // each contained in an incoming array object// of type double. The double values are // truncated to no more than four digits// before displaying them. Then they are // displayed on a single line.static void display(double[] real,double[] imag){System.out.println("Real: "); for(int cnt=0;cnt<real.length;cnt++){ System.out.print(((int)(1000.0*real[cnt])) /1000.0 + " ");}//end for loop System.out.println();System.out.println("imag: "); for(int cnt=0;cnt<imag.length;cnt++){ System.out.print(((int)(1000.0*imag[cnt])) /1000.0 + " ");}//end for loop System.out.println();}//end display }//end class Fft02//=============================================// //This class applies the processes normally used// in an FFT algorithm. However, this class does // not apply those processes in the special order// required of an FFT algorithm. It is that // special order that minimizes the arithmetic// requirements of an FFT algorithm and causes it // to be very fast. The purpose of an object of// this class is to illustrate the processes in a // more easily understood fashion that is often// the case with an actual FFT algorithm. class Transform{void doIt(double[] realIn,double[]imagIn, double scale,double[]realOut, double[]imagOut){ //Each complex value in the incoming arrays// represents both a complex sample and the // transform of that complex sample under the// assumption that the complex sample appears // at the beginning of the series.//Correct the transform result for each of // the complex samples in the series to// reflect the actual position of the complex // sample in the series. Add the corrected// transform result into accumulators in // order toproduce the transform of the // original complex series.for(int cnt = 0;cnt<realIn.length;cnt++){ correctAndRecombine(realIn[cnt], imagIn[cnt], cnt,realIn.length, scale,realOut, imagOut);}//end for loop }//end doIt//===========================================// //This method accepts an incoming complex// sample value and the position in the series // associated with that sample. The method// calculates the real and imaginary transform // values associated with that complex sample// when it is located at the specified // position. Then it updates the corresponding// real and imaginary values contained in array // objects used to accumulate the real and// imaginary values for all of the samples. // References to the array objects are received// as input parameters. Outgoing results are // scaled by an incoming parameter in an// attempt to cause the output values to fall // within a reasonable range in case someone// wants to plot them. void correctAndRecombine(double realSample,double imagSample, int position,int length,double scale,double[] realOut,double[]imagOut){ //Calculate the complex transform values for// each sample in the complex output series. for(int cnt = 0; cnt<length; cnt++){ double angle =(2.0*Math.PI*cnt/length)*position; //Calculate output based on real inputrealOut[cnt] +=realSample*Math.cos(angle)/scale; imagOut[cnt]+= realSample*Math.sin(angle)/scale;//Calculate output based on imag input realOut[cnt]-= imagSample*Math.sin(angle)/scale;imagOut[cnt] +=imagSample*Math.cos(angle)/scale; }//end for loop}//end correctAndRecombine }//end class transform

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material
  • Module name: Java1486-Fun with Java, Understanding the Fast Fourier Transform (FFT) Algorithm
  • File: Java1486.htm
  • Published: 01/04/05

Baldwin explains the underlying signal processing concepts that make the Fast Fourier Transform (FFT) algorithm possible.

Disclaimers:

Financial : Although the Connexions site makes it possible for you to download a PDF file for thismodule at no charge, and also makes it possible for you to purchase a pre-printed version of the PDF file, you should beaware that some of the HTML elements in this module may not translate well into PDF.

I also want you to know that, I receive no financial compensation from the Connexions website even if you purchase the PDF version of the module.

In the past, unknown individuals have copied my modules from cnx.org, converted them to Kindle books, and placed them for sale on Amazon.com showing me as the author. Ineither receive compensation for those sales nor do I know who does receive compensation. If you purchase such a book, please beaware that it is a copy of a module that is freely available on cnx.org and that it was made and published withoutmy prior knowledge.

Affiliation : I am a professor of Computer Information Technology at Austin Community College in Austin, TX.

-end-

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Digital signal processing - dsp. OpenStax CNX. Jan 06, 2016 Download for free at https://legacy.cnx.org/content/col11642/1.38
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Digital signal processing - dsp' conversation and receive update notifications?

Ask