<< Chapter < Page Chapter >> Page >
  • Determine the equation of a plane tangent to a given surface at a point.
  • Use the tangent plane to approximate a function of two variables at a point.
  • Explain when a function of two variables is differentiable.
  • Use the total differential to approximate the change in a function of two variables.

In this section, we consider the problem of finding the tangent plane to a surface, which is analogous to finding the equation of a tangent line to a curve when the curve is defined by the graph of a function of one variable, y = f ( x ) . The slope of the tangent line at the point x = a is given by m = f ( a ) ; what is the slope of a tangent plane? We learned about the equation of a plane in Equations of Lines and Planes in Space ; in this section, we see how it can be applied to the problem at hand.

Tangent planes

Intuitively, it seems clear that, in a plane, only one line can be tangent to a curve at a point. However, in three-dimensional space, many lines can be tangent to a given point. If these lines lie in the same plane, they determine the tangent plane at that point. A more intuitive way to think of a tangent plane is to assume the surface is smooth at that point (no corners). Then, a tangent line to the surface at that point in any direction does not have any abrupt changes in slope because the direction changes smoothly. Therefore, in a small-enough neighborhood around the point, a tangent plane touches the surface at that point only.


Let P 0 = ( x 0 , y 0 , z 0 ) be a point on a surface S , and let C be any curve passing through P 0 and lying entirely in S . If the tangent lines to all such curves C at P 0 lie in the same plane, then this plane is called the tangent plane    to S at P 0 ( [link] ).

A surface S is shown with a point P0 = (x0, y0, z0). There are two intersecting curves shown on S that pass through P0. There are tangents drawn for each of these curves at P0, and these tangent lines create a plane, namely, the tangent plane at P0.
The tangent plane to a surface S at a point P 0 contains all the tangent lines to curves in S that pass through P 0 .

For a tangent plane to a surface to exist at a point on that surface, it is sufficient for the function that defines the surface to be differentiable at that point. We define the term tangent plane here and then explore the idea intuitively.


Let S be a surface defined by a differentiable function z = f ( x , y ) , and let P 0 = ( x 0 , y 0 ) be a point in the domain of f . Then, the equation of the tangent plane to S at P 0 is given by

z = f ( x 0 , y 0 ) + f x ( x 0 , y 0 ) ( x x 0 ) + f y ( x 0 , y 0 ) ( y y 0 ) .

To see why this formula is correct, let’s first find two tangent lines to the surface S . The equation of the tangent line to the curve that is represented by the intersection of S with the vertical trace given by x = x 0 is z = f ( x 0 , y 0 ) + f y ( x 0 , y 0 ) ( y y 0 ) . Similarly, the equation of the tangent line to the curve that is represented by the intersection of S with the vertical trace given by y = y 0 is z = f ( x 0 , y 0 ) + f x ( x 0 , y 0 ) ( x x 0 ) . A parallel vector to the first tangent line is a = j + f y ( x 0 , y 0 ) k; a parallel vector to the second tangent line is b = i + f x ( x 0 , y 0 ) k . We can take the cross product of these two vectors:

a × b = ( j + f y ( x 0 , y 0 ) k ) × ( i + f x ( x 0 , y 0 ) k ) = | i j k 0 1 f y ( x 0 , y 0 ) 1 0 f x ( x 0 , y 0 ) | = f x ( x 0 , y 0 ) i + f y ( x 0 , y 0 ) j k .

This vector is perpendicular to both lines and is therefore perpendicular to the tangent plane. We can use this vector as a normal vector to the tangent plane, along with the point P 0 = ( x 0 , y 0 , f ( x 0 , y 0 ) ) in the equation for a plane:

Questions & Answers

how can chip be made from sand
Eke Reply
are nano particles real
Missy Reply
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
has a lot of application modern world
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
can you provide the details of the parametric equations for the lines that defince doubly-ruled surfeces (huperbolids of one sheet and hyperbolic paraboloid). Can you explain each of the variables in the equations?
Radek Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, Calculus volume 3. OpenStax CNX. Feb 05, 2016 Download for free at http://legacy.cnx.org/content/col11966/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 3' conversation and receive update notifications?