# 3.5 Other strategies for integration

 Page 1 / 3
• Use a table of integrals to solve integration problems.
• Use a computer algebra system (CAS) to solve integration problems.

In addition to the techniques of integration we have already seen, several other tools are widely available to assist with the process of integration. Among these tools are integration tables , which are readily available in many books, including the appendices to this one. Also widely available are computer algebra systems (CAS) , which are found on calculators and in many campus computer labs, and are free online.

## Tables of integrals

Integration tables, if used in the right manner, can be a handy way either to evaluate or check an integral quickly. Keep in mind that when using a table to check an answer, it is possible for two completely correct solutions to look very different. For example, in Trigonometric Substitution , we found that, by using the substitution $x=\text{tan}\phantom{\rule{0.1em}{0ex}}\theta ,$ we can arrive at

$\int \frac{dx}{\sqrt{1+{x}^{2}}}=\text{ln}\left(x+\sqrt{{x}^{2}+1}\right)+C.$

However, using $x=\text{sinh}\phantom{\rule{0.1em}{0ex}}\theta ,$ we obtained a different solution—namely,

$\int \frac{dx}{\sqrt{1+{x}^{2}}}={\text{sinh}}^{-1}x+C.$

We later showed algebraically that the two solutions are equivalent. That is, we showed that ${\text{sinh}}^{-1}x=\text{ln}\left(x+\sqrt{{x}^{2}+1}\right).$ In this case, the two antiderivatives that we found were actually equal. This need not be the case. However, as long as the difference in the two antiderivatives is a constant, they are equivalent.

## Using a formula from a table to evaluate an integral

Use the table formula

$\int \frac{\sqrt{{a}^{2}-{u}^{2}}}{{u}^{2}}du=-\frac{\sqrt{{a}^{2}-{u}^{2}}}{u}-{\text{sin}}^{-1}\frac{u}{a}+C$

to evaluate $\int \frac{\sqrt{16-{e}^{2x}}}{{e}^{x}}dx.$

If we look at integration tables, we see that several formulas contain expressions of the form $\sqrt{{a}^{2}-{u}^{2}}.$ This expression is actually similar to $\sqrt{16-{e}^{2x}},$ where $a=4$ and $u={e}^{x}.$ Keep in mind that we must also have $du={e}^{x}.$ Multiplying the numerator and the denominator of the given integral by ${e}^{x}$ should help to put this integral in a useful form. Thus, we now have

$\int \frac{\sqrt{16-{e}^{2x}}}{{e}^{x}}dx=\int \frac{\sqrt{16-{e}^{2x}}}{{e}^{2x}}{e}^{x}dx.$

Substituting $u={e}^{x}$ and $du={e}^{x}$ produces $\int \frac{\sqrt{{a}^{2}-{u}^{2}}}{{u}^{2}}du.$ From the integration table (#88 in Appendix A ),

$\int \frac{\sqrt{{a}^{2}-{u}^{2}}}{{u}^{2}}du=-\frac{\sqrt{{a}^{2}-{u}^{2}}}{u}-{\text{sin}}^{-1}\frac{u}{a}+C.$

Thus,

$\begin{array}{ccccc}\hfill \int \frac{\sqrt{16-{e}^{2x}}}{{e}^{x}}dx& =\int \frac{\sqrt{16-{e}^{2x}}}{{e}^{2x}}{e}^{x}dx\hfill & & & \text{Substitute}\phantom{\rule{0.2em}{0ex}}u={e}^{x}\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}du={e}^{x}dx.\hfill \\ & =\int \frac{\sqrt{{4}^{2}-{u}^{2}}}{{u}^{2}}du\hfill & & & \text{Apply the formula using}\phantom{\rule{0.2em}{0ex}}a=4.\hfill \\ & =-\frac{\sqrt{{4}^{2}-{u}^{2}}}{u}-{\text{sin}}^{-1}\frac{u}{4}+C\hfill & & & \text{Substitute}\phantom{\rule{0.2em}{0ex}}u={e}^{x}.\hfill \\ & =-\frac{\sqrt{16-{e}^{2x}}}{u}-{\text{sin}}^{-1}\left(\frac{{e}^{x}}{4}\right)+C.\hfill & & & \end{array}$

## Computer algebra systems

If available, a CAS is a faster alternative to a table for solving an integration problem. Many such systems are widely available and are, in general, quite easy to use.

## Using a computer algebra system to evaluate an integral

Use a computer algebra system to evaluate $\int \frac{dx}{\sqrt{{x}^{2}-4}}.$ Compare this result with $\text{ln}|\frac{\sqrt{{x}^{2}-4}}{2}+\frac{x}{2}|+C,$ a result we might have obtained if we had used trigonometric substitution.

Using Wolfram Alpha, we obtain

$\int \frac{dx}{\sqrt{{x}^{2}-4}}=\text{ln}|\sqrt{{x}^{2}-4}+x|+C.$

Notice that

$\text{ln}|\frac{\sqrt{{x}^{2}-4}}{2}+\frac{x}{2}|+C=\text{ln}|\frac{\sqrt{{x}^{2}-4}+x}{2}|+C=\text{ln}|\sqrt{{x}^{2}-4}+x|-\text{ln}\phantom{\rule{0.1em}{0ex}}2+C.$

Since these two antiderivatives differ by only a constant, the solutions are equivalent. We could have also demonstrated that each of these antiderivatives is correct by differentiating them.

You can access an integral calculator for more examples.

## Using a cas to evaluate an integral

Evaluate ${\int }^{\text{​}}{\text{sin}}^{3}x\phantom{\rule{0.1em}{0ex}}dx$ using a CAS. Compare the result to $\frac{1}{3}{\text{cos}}^{3}x-\text{cos}\phantom{\rule{0.1em}{0ex}}x+C,$ the result we might have obtained using the technique for integrating odd powers of $\text{sin}\phantom{\rule{0.1em}{0ex}}x$ discussed earlier in this chapter.

Using Wolfram Alpha, we obtain

$\int {\text{sin}}^{3}x\phantom{\rule{0.1em}{0ex}}dx=\frac{1}{12}\left(\text{cos}\left(3x\right)-9\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}x\right)+C.$

This looks quite different from $\frac{1}{3}{\text{cos}}^{3}x-\text{cos}\phantom{\rule{0.1em}{0ex}}x+C.$ To see that these antiderivatives are equivalent, we can make use of a few trigonometric identities:

$\begin{array}{cc}\hfill \frac{1}{12}\left(\text{cos}\left(3x\right)-9\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}x\right)& =\frac{1}{12}\left(\text{cos}\left(x+2x\right)-9\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}x\right)\hfill \\ & =\frac{1}{12}\left(\text{cos}\left(x\right)\text{cos}\left(2x\right)-\text{sin}\left(x\right)\text{sin}\left(2x\right)-9\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}x\right)\hfill \\ & =\frac{1}{12}\left(\text{cos}\phantom{\rule{0.1em}{0ex}}x\left(2\phantom{\rule{0.1em}{0ex}}{\text{cos}}^{2}x-1\right)-\text{sin}\phantom{\rule{0.1em}{0ex}}x\left(2\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}x\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}x\right)-9\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}x\right)\hfill \\ & =\frac{1}{12}\left(2{\text{cos}}^{\phantom{\rule{0.1em}{0ex}}}x-\text{cos}\phantom{\rule{0.1em}{0ex}}x-2\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}x\left(1-{\text{cos}}^{2}x\right)-9\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}x\right)\hfill \\ & =\frac{1}{12}\left(4{\text{cos}}^{\phantom{\rule{0.1em}{0ex}}}x-12\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}x\right)\hfill \\ & =\frac{1}{3}{\text{cos}}^{\phantom{\rule{0.1em}{0ex}}}x-\text{cos}\phantom{\rule{0.1em}{0ex}}x.\hfill \end{array}$

Thus, the two antiderivatives are identical.

We may also use a CAS to compare the graphs of the two functions, as shown in the following figure.

Use a CAS to evaluate $\int \frac{dx}{\sqrt{{x}^{2}+4}}.$

Possible solutions include ${\text{sinh}}^{-1}\left(\frac{x}{2}\right)+C$ and $\text{ln}|\sqrt{{x}^{2}+4}+x|+C.$

## Key concepts

• An integration table may be used to evaluate indefinite integrals.
• A CAS (or computer algebra system) may be used to evaluate indefinite integrals.
• It may require some effort to reconcile equivalent solutions obtained using different methods.

Use a table of integrals to evaluate the following integrals.

$\underset{0}{\overset{4}{\int }}\frac{x}{\sqrt{1+2x}}dx$

$\int \frac{x+3}{{x}^{2}+2x+2}dx$

$\frac{1}{2}\text{ln}|{x}^{2}+2x+2|+2\phantom{\rule{0.1em}{0ex}}\text{arctan}\left(x+1\right)+C$

$\int {x}^{3}\sqrt{1+2{x}^{2}}\phantom{\rule{0.1em}{0ex}}dx$

$\int \frac{1}{\sqrt{{x}^{2}+6x}}dx$

${\text{cosh}}^{-1}\left(\frac{x+3}{3}\right)+C$

$\int \frac{x}{x+1}dx$

$\int x·{2}^{{x}^{2}}dx$

$\frac{{2}^{{x}^{2}-1}}{\text{ln}\phantom{\rule{0.1em}{0ex}}2}+C$

$\int \frac{1}{4{x}^{2}+25}dx$

$\int \frac{dy}{\sqrt{4-{y}^{2}}}$

$\text{arcsin}\left(\frac{y}{2}\right)+C$

$\int {\text{sin}}^{3}\left(2x\right)\text{cos}\left(2x\right)dx$

$\int \text{csc}\left(2w\right)\text{cot}\left(2w\right)dw$

$-\frac{1}{2}\text{csc}\left(2w\right)+C$

$\int {2}^{y}dy$

${\int }_{0}^{1}\frac{3x\phantom{\rule{0.1em}{0ex}}dx}{\sqrt{{x}^{2}+8}}$

$9-6\sqrt{2}$

${\int }_{-1\text{/}4}^{1\text{/}4}{\text{sec}}^{2}\left(\pi x\right)\text{tan}\left(\pi x\right)dx$

${\int }_{0}^{\pi \text{/}2}{\text{tan}}^{2}\left(\frac{x}{2}\right)dx$

$2-\frac{\pi }{2}$

$\int {\text{cos}}^{3}x\phantom{\rule{0.1em}{0ex}}dx$

$\int {\text{tan}}^{5}\left(3x\right)dx$

$\frac{1}{12}{\text{tan}}^{4}\left(3x\right)-\frac{1}{6}{\text{tan}}^{2}\left(3x\right)+\frac{1}{3}\text{ln}|\text{sec}\left(3x\right)|+C$

$\int {\text{sin}}^{2}y\phantom{\rule{0.1em}{0ex}}{\text{cos}}^{3}ydy$

Use a CAS to evaluate the following integrals. Tables can also be used to verify the answers.

[T] $\int \frac{dw}{1+\text{sec}\left(\frac{w}{2}\right)}$

$2\phantom{\rule{0.1em}{0ex}}\text{cot}\left(\frac{w}{2}\right)-2\phantom{\rule{0.1em}{0ex}}\text{csc}\left(\frac{w}{2}\right)+w+C$

[T] $\int \frac{dw}{1-\text{cos}\left(7w\right)}$

[T] ${\int }_{0}^{t}\frac{dt}{4\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}t+3\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}t}$

$\frac{1}{5}\text{ln}|\frac{2\left(5+4\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}t-3\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}t\right)}{4\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}t+3\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}t}|$

[T] $\int \frac{\sqrt{{x}^{2}-9}}{3x}dx$

[T] $\int \frac{dx}{{x}^{1\text{/}2}+{x}^{1\text{/}3}}$

$6{x}^{1\text{/}6}-3{x}^{1\text{/}3}+2\sqrt{x}-6\phantom{\rule{0.1em}{0ex}}\text{ln}\left[1+{x}^{1\text{/}6}\right]+C$

[T] $\int \frac{dx}{x\sqrt{x-1}}$

[T] $\int {x}^{3}\text{sin}\phantom{\rule{0.1em}{0ex}}x\phantom{\rule{0.1em}{0ex}}dx$

$\text{−}{x}^{3}\text{cos}\phantom{\rule{0.1em}{0ex}}x+3{x}^{2}\text{sin}\phantom{\rule{0.1em}{0ex}}x+6x\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}x-6\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}x+C$

[T] $\int x\sqrt{{x}^{4}-9}\phantom{\rule{0.1em}{0ex}}dx$

[T] $\int \frac{x}{1+{e}^{\text{−}{x}^{2}}}dx$

$\frac{1}{2}\left({x}^{2}+\text{ln}|1+{e}^{\text{−}{x}^{2}}|\right)+C$

[T] $\int \frac{\sqrt{3-5x}}{2x}dx$

[T] $\int \frac{dx}{x\sqrt{x-1}}$

$2\phantom{\rule{0.1em}{0ex}}\text{arctan}\left(\sqrt{x-1}\right)+C$

[T] $\int {e}^{x}{\text{cos}}^{-1}\left({e}^{x}\right)dx$

Use a calculator or CAS to evaluate the following integrals.

[T] ${\int }_{0}^{\pi \text{/}4}\text{cos}\left(2x\right)dx$

$0.5=\frac{1}{2}$

[T] ${\int }_{0}^{1}x·{e}^{\text{−}{x}^{2}}dx$

[T] ${\int }_{0}^{8}\frac{2x}{\sqrt{{x}^{2}+36}}dx$

8.0

[T] ${\int }_{0}^{2\text{/}\sqrt{3}}\frac{1}{4+9{x}^{2}}dx$

[T] $\int \frac{dx}{{x}^{2}+4x+13}$

$\frac{1}{3}\text{arctan}\left(\frac{1}{3}\left(x+2\right)\right)+C$

[T] $\int \frac{dx}{1+\text{sin}\phantom{\rule{0.1em}{0ex}}x}$

Use tables to evaluate the integrals. You may need to complete the square or change variables to put the integral into a form given in the table.

$\int \frac{dx}{{x}^{2}+2x+10}$

$\frac{1}{3}\text{arctan}\left(\frac{x+1}{3}\right)+C$

$\int \frac{dx}{\sqrt{{x}^{2}-6x}}$

$\int \frac{{e}^{x}}{\sqrt{{e}^{2x}-4}}dx$

$\text{ln}\left({e}^{x}+\sqrt{4+{e}^{2x}}\right)+C$

$\int \frac{\text{cos}\phantom{\rule{0.1em}{0ex}}x}{{\text{sin}}^{2}x+2\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}x}dx$

$\int \frac{\text{arctan}\left({x}^{3}\right)}{{x}^{4}}dx$

$\text{ln}\phantom{\rule{0.1em}{0ex}}x-\frac{1}{6}\text{ln}\left({x}^{6}+1\right)-\frac{\text{arctan}\left({x}^{3}\right)}{3{x}^{3}}+C$

$\int \frac{\text{ln}|x|\text{arcsin}\left(\text{ln}|x|\right)}{x}dx$

Use tables to perform the integration.

$\int \frac{dx}{\sqrt{{x}^{2}+16}}$

$\text{ln}|x+\sqrt{16+{x}^{2}}|+C$

$\int \frac{3x}{2x+7}dx$

$\int \frac{dx}{1-\text{cos}\left(4x\right)}$

$-\frac{1}{4}\text{cot}\left(2x\right)+C$

$\int \frac{dx}{\sqrt{4x+1}}$

Find the area bounded by $y\left(4+25{x}^{2}\right)=5,x=0,y=0,\text{and}\phantom{\rule{0.2em}{0ex}}x=4.$ Use a table of integrals or a CAS.

$\frac{1}{2}\text{arctan}\phantom{\rule{0.1em}{0ex}}10$

The region bounded between the curve $y=\frac{1}{\sqrt{1+\text{cos}\phantom{\rule{0.1em}{0ex}}x}},0.3\le x\le 1.1,$ and the x -axis is revolved about the x -axis to generate a solid. Use a table of integrals to find the volume of the solid generated. (Round the answer to two decimal places.)

Use substitution and a table of integrals to find the area of the surface generated by revolving the curve $y={e}^{x},0\le x\le 3,$ about the x -axis. (Round the answer to two decimal places.)

1276.14

[T] Use an integral table and a calculator to find the area of the surface generated by revolving the curve $y=\frac{{x}^{2}}{2},0\le x\le 1,$ about the x -axis. (Round the answer to two decimal places.)

[T] Use a CAS or tables to find the area of the surface generated by revolving the curve $y=\text{cos}\phantom{\rule{0.1em}{0ex}}x,0\le x\le \frac{\pi }{2},$ about the x -axis. (Round the answer to two decimal places.)

7.21

Find the length of the curve $y=\frac{{x}^{2}}{4}$ over $\left[0,8\right].$

Find the length of the curve $y={e}^{x}$ over $\left[0,\text{ln}\left(2\right)\right].$

$\sqrt{5}-\sqrt{2}+\text{ln}|\frac{2+2\sqrt{2}}{1+\sqrt{5}}|$

Find the area of the surface formed by revolving the graph of $y=2\sqrt{x}$ over the interval $\left[0,9\right]$ about the x -axis.

Find the average value of the function $f\left(x\right)=\frac{1}{{x}^{2}+1}$ over the interval $\left[-3,3\right].$

$\frac{1}{3}\text{arctan}\left(3\right)\approx 0.416$

Approximate the arc length of the curve $y=\text{tan}\left(\pi x\right)$ over the interval $\left[0,\frac{1}{4}\right].$ (Round the answer to three decimal places.)

where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Leaves accumulate on the forest floor at a rate of 2 g/cm2/yr and also decompose at a rate of 90% per year. Write a differential equation governing the number of grams of leaf litter per square centimeter of forest floor, assuming at time 0 there is no leaf litter on the ground. Does this amount approach a steady value? What is that value?
You have a cup of coffee at temperature 70°C, which you let cool 10 minutes before you pour in the same amount of milk at 1°C as in the preceding problem. How does the temperature compare to the previous cup after 10 minutes?
Abdul