<< Chapter < Page Chapter >> Page >

2)d(q1, 1, R) = {(q1,YR)}

3)d(q1, 0, B) = {(q1, BB), (q2, e)}

4)d(q1, 0, Y) = {(q1, BY)}

5)d(q1, 1, B) = {(q1, YB)}

6)d(q1, 1, Y) = {(q1, YY),(q2, e)}

7)d(q2, 0, B) = {(q2, e)}

8)d(q2, 1, Y) = {(q2, e)}

9)d(q1, e, R) = {(q2, e)}

10)d(q2, e, R) = {(q2, e)}

Hình 6.4 - Mô tả PDA không đơn định chấp nhận wwR bằng Stack rỗng

Quy tắc (1) đến (3) cho phép M lưu trữ input trên Stack, quy tắc (3) và (6) cho phép M lựa chọn một trong hai phép chuyển. M có thể quyết định (đoán) đã đi đến giữa chuỗi nó chuyển sang phép chuyển thứ 2: M chuyển sang q2 và thử sự thích hợp của phần chuỗi còn lại với các ký hiệu đang ở trên Stack. Nếu M đoán đúng và nếu chuỗi nhập có dạng wwR thì M sẽ làm rỗng Stack của nó và chấp nhận chuỗi nhập.

Cũng như NFA một PDA không đơn định (NPDA) M chấp nhận một input nếu có một chuỗi các lựa chọn mà M làm rỗng Stack của nó. Nghĩa là M luôn luôn "đoán đúng", đoán sai không phải là nguyên nhân để loại bỏ input. Một input bị loại bỏ nếu và chỉ nếu không có sự lựa chọn nào để làm rỗng Stack (hay là không thể "đoán đúng" vì không tồn tại cách đúng).

Thí dụ 6.4 :Các phép chuyển hình thái của PDA chấp nhận chuỗi 001100 thuộc ngôn ngữ {wwR w  (0+1)*} bằng Stack rỗng như sau :

Khởi đầu


(q1, 001100, R) ® (q2, 001100, e) : Không chấp nhận


(q1, 01100, BR) ® (q2, 1100, R) ® (q2, 1100, e) : Không chấp nhận


(q1, 1100, BBR)


(q1, 100, YBBR) ® (q2, 00, BBR)

¯ ¯

(q1, 00, YYBBR) (q2, 0, BR)  (q2, e, R)  (q2, e, e) : Chấp nhận


(q1, 0, BYYBBR) ® (q2, e, YYBBR) : Không chấp nhận


(q1, e, BBYYBBR) : Không chấp nhận

Hình 6.5 - Hình thái của PDA với input 001100

PDA đơn định (DPDA)

Một PDA M (Q, , , , q0, Z0, F) được gọi là đơn định nếu:

1) q  Q và Z  : nếu (q, , Z)   thì (q, a, Z) = , a  

2) Không có q Q, Z   và a  (  {}) mà (q, a, Z) chứa nhiều hơn một phần tử.

Điều kiện 1 không cho phép khả năng chọn lựa giữa phép chuyển không xác định ký hiệu nhập ( - dịch chuyển) và phép chuyển trên một ký hiệu input. Điều kiện 2 không cho phép chọn lựa một vài phép chuyển nào đó (q, a, Z) hay (q, , Z). Không như ôtômát hữu hạn FA, một PDA thì thông thường được xét là không đơn định trừ khi ta có ghi chú cụ thể.

Đối với ôtômát hữu hạn, dạng đơn định và không đơn định là tương đương nhau về phương diện chấp nhận ngôn ngữ. Tuy nhiên, điều này không đúng với ôtômát đẩy xuống, PDA không đơn định và PDA đơn định là không tương đương nhau. Thực tế ngôn ngữ wwR được chấp nhận bởi một PDA không đơn định nhưng không được chấp nhận bởi bất kỳ một PDA đơn định nào.

Pda và văn phạm phi ngữ cảnh

Tương đương của việc chấp nhận chuỗi bởi trạng thái kết thúc và bởi stack rỗng

ĐỊNH LÝ 6.1: Nếu L là L(M2) với PDA M2 thì L là N(M1) với PDA M1 nào đó.

Chứng minh

Ta sẽ xây dựng M1 tương tự như M2 nhưng M1 sẽ xóa rỗng Stack của nó khi M2 đi vào trạng thái kết thúc. Ta dùng một trạng thái qe của M1 để xóa Stack của nó và dùng ký hiệu đánh dấu đáy Stack M1 bằng ký hiệu X0, vì vậy M1 không thể làm rỗng Stack của nó khi M2 chưa đi vào trạng thái kết thúc.

Đặt M2 (Q, , , , q0, Z0, F) là PDA sao cho L = L(M2).

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Giáo trình tin học lý thuyết. OpenStax CNX. Jul 30, 2009 Download for free at http://cnx.org/content/col10826/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Giáo trình tin học lý thuyết' conversation and receive update notifications?