<< Chapter < Page Chapter >> Page >

Formulas from geometry

A = area , V = Volume , and S = lateral surface area

The figure shows five geometric figures. The first is a parallelogram with height labeled as h and base as b. Below the figure is the formula for area, A = bh. The second is a triangle with height labeled as h and base as b. Below the figure is the formula for area, A = (1/2)bh.. The third is a trapezoid with the top horizontal side labeled as a, height as h, and base as b. Below the figure is the formula for area, A = (1/2)(a + b)h. The fourth is a circle with radius labeled as r. Below the figure is the formula for area, A= (pi)(r^2), and the formula for circumference, C = 2(pi)r. The fifth is a sector of a circle with radius labeled as r, sector length as s, and angle as theta. Below the figure is the formula for area, A = (1/2)r^2(theta), and sector length, s = r(theta) (theta in radians). The figure shows three solid figures. The first is a cylinder with height labeled as h and radius as r. Below the figure are the formulas for volume, V = (pi)(r^2)h, and surface area, S = 2(pi)rh. The second is a cone with height labeled as h, radius as r, and lateral side length as l. Below the figure are the formulas for volume, V = (1/3)(pi)(r^2)h, and surface area, S = (pi)rl. The third is a sphere with radius labeled as r. Below the figure are the formulas for volume, V = (4/3)(pi)(r^3), and surface area, S = 4(pi)r^2.

Formulas from algebra

Laws of exponents

x m x n = x m + n x m x n = x m n ( x m ) n = x m n x n = 1 x n ( x y ) n = x n y n ( x y ) n = x n y n x 1 / n = x n x y n = x n y n x y n = x n y n x m / n = x m n = ( x n ) m

Special factorizations

x 2 y 2 = ( x + y ) ( x y ) x 3 + y 3 = ( x + y ) ( x 2 x y + y 2 ) x 3 y 3 = ( x y ) ( x 2 + x y + y 2 )

Quadratic formula

If a x 2 + b x + c = 0 , then x = b ± b 2 4 c a 2 a .

Binomial theorem

( a + b ) n = a n + ( n 1 ) a n 1 b + ( n 2 ) a n 2 b 2 + + ( n n 1 ) a b n 1 + b n ,

where ( n k ) = n ( n 1 ) ( n 2 ) ( n k + 1 ) k ( k 1 ) ( k 2 ) 3 2 1 = n ! k ! ( n k ) !

Formulas from trigonometry

Right-angle trigonometry

sin θ = opp hyp csc θ = hyp opp cos θ = adj hyp sec θ = hyp adj tan θ = opp adj cot θ = adj opp

The figure shows a right triangle with the longest side labeled hyp, the shorter leg labeled as opp, and the longer leg labeled as adj. The angle between the hypotenuse and the adjacent side is labeled theta.

Trigonometric functions of important angles

θ Radians sin θ cos θ tan θ
0 ° 0 0 1 0
30 ° π / 6 1 / 2 3 / 2 3 / 3
45 ° π / 4 2 / 2 2 / 2 1
60 ° π / 3 3 / 2 1 / 2 3
90 ° π / 2 1 0

Fundamental identities

sin 2 θ + cos 2 θ = 1 sin ( θ ) = sin θ 1 + tan 2 θ = sec 2 θ cos ( θ ) = cos θ 1 + cot 2 θ = csc 2 θ tan ( θ ) = tan θ sin ( π 2 θ ) = cos θ sin ( θ + 2 π ) = sin θ cos ( π 2 θ ) = sin θ cos ( θ + 2 π ) = cos θ tan ( π 2 θ ) = cot θ tan ( θ + π ) = tan θ

Law of sines

sin A a = sin B b = sin C c

The figure shows a nonright triangle with vertices labeled A, B, and C. The side opposite angle A is labeled a. The side opposite angle B is labeled b. The side opposite angle C is labeled c.

Law of cosines

a 2 = b 2 + c 2 2 b c cos A b 2 = a 2 + c 2 2 a c cos B c 2 = a 2 + b 2 2 a b cos C

Addition and subtraction formulas

sin ( x + y ) = sin x cos y + cos x sin y sin ( x y ) = sin x cos y cos x sin y cos ( x + y ) = cos x cos y sin x sin y cos ( x y ) = cos x cos y + sin x sin y tan ( x + y ) = tan x + tan y 1 tan x tan y tan ( x y ) = tan x tan y 1 + tan x tan y

Double-angle formulas

sin 2 x = 2 sin x cos x cos 2 x = cos 2 x sin 2 x = 2 cos 2 x 1 = 1 2 sin 2 x tan 2 x = 2 tan x 1 tan 2 x

Half-angle formulas

sin 2 x = 1 cos 2 x 2 cos 2 x = 1 + cos 2 x 2

Questions & Answers

I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Calculus volume 3. OpenStax CNX. Feb 05, 2016 Download for free at http://legacy.cnx.org/content/col11966/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 3' conversation and receive update notifications?

Ask