# 5.4 Bayesian methods

 Page 1 / 1
This module provides an overview of the application of Bayesian methods to compressive sensing and sparse recovery.

## Setup

Throughout this course , we have almost exclusively worked within a deterministic signal framework. In other words, our signal $x$ is fixed and belongs to a known set of signals. In this section, we depart from this framework and assume that the sparse (or compressible ) signal of interest arises from a known probability distribution , i.e., we assume sparsity promoting priors on the elements of $x$ , and recover from the stochastic measurements $y=\Phi x$ a probability distribution on each nonzero element of $x$ . Such an approach falls under the purview of Bayesian methods for sparse recovery .

The algorithms discussed in this section demonstrate a digression from the conventional sparse recovery techniques typically used in compressive sensing (CS). We note that none of these algorithms are accompanied by guarantees on the number of measurements required, or the fidelity of signal reconstruction; indeed, in a Bayesian signal modeling framework, there is no well-defined notion of “reconstruction error”. However, such methods do provide insight into developing recovery algorithms for rich classes of signals, and may be of considerable practical interest.

## Sparse recovery via belief propagation

As we will see later in this course, there are significant parallels to be drawn between error correcting codes and sparse recovery  [link] . In particular, sparse codes such as LDPC codes have had grand success. The advantage that sparse coding matrices may have in efficient encoding of signals and their low complexity decoding algorithms, is transferable to CS encoding and decoding with the use of sparse sensing matrices $\Phi$ . The sparsity in the $\Phi$ matrix is equivalent to the sparsity in LDPC coding graphs. Factor graph depicting the relationship between the variables involved in CS decoding using BP. Variable nodes are black and the constraint nodes are white.

A sensing matrix $\Phi$ that defines the relation between the signal $x$ and measurements $y$ can be represented as a bipartite graph of signal coefficient nodes $x\left(i\right)$ and measurement nodes $y\left(i\right)$   [link] , [link] . The factor graph in [link] represents the relationship between the signal coefficients and measurements in the CS decoding problem.

The choice of signal probability density is of practical interest. In many applications, the signals of interest need to be modeled as being compressible (as opposed to being strictly sparse). This behavior is modeled by a two-state Gaussian mixture distribution, with each signal coefficient taking either a “large” or “small” coefficient value state. Assuming that the elements of $x$ are i.i.d., it can be shown that small coefficients occur more frequently than the large coefficients. Other distributions besides the two-state Gaussian may also be used to model the coefficients, for e.g., the i.i.d. Laplace prior on the coefficients of $x$ .

The ultimate goal is to estimate (i.e., decode) $x$ , given $y$ and $\Phi$ . The decoding problem takes the form of a Bayesian inference problem in which we want to approximate the marginal distributions of each of the $x\left(i\right)$ coefficients conditioned on the observed measurements $y\left(i\right)$ . We can then estimate the Maximum Likelihood Estimate (MLE), or the Maximum a Posteriori (MAP) estimates of the coefficients from their distributions. This sort of inference can be solved using a variety of methods; for example, the popular belief propagation method (BP)  [link] can be applied to solve for the coefficients approximately. Although exact inference in arbitrary graphical models is an NP hard problem, inference using BP can be employed when $\Phi$ is sparse enough, i.e., when most of the entries in the matrix are equal to zero.

## Sparse bayesian learning

Another probabilistic approach used to estimate the components of $x$ is by using Relevance Vector Machines (RVMs). An RVM is essentially a Bayesian learning method that produces sparse classification by linearly weighting a small number of fixed basis functions from a large dictionary of potential candidates (for more details the interested reader may refer to  [link] , [link] ). From the CS perspective, we may view this as a method to determine the elements of a sparse $x$ which linearly weight the basis functions comprising the columns of $\Phi$ .

The RVM setup employs a hierarchy of priors; first, a Gaussian prior is assigned to each of the $N$ elements of $x$ ; subsequently, a Gamma prior is assigned to the inverse-variance ${\alpha }_{i}$ of the ${i}^{\mathrm{th}}$ Gaussian prior. Therefore each ${\alpha }_{i}$ controls the strength of the prior on its associated weight in ${x}_{i}$ . If $x$ is the sparse vector to be reconstructed, its associated Gaussian prior is given by:

$p\left(x|\alpha \right)=\prod _{i=1}^{N}\mathcal{N}\left({x}_{i}|0,{\alpha }_{i}^{-1}\right)$

and the Gamma prior on $\alpha$ is written as:

$p\left(\alpha |a,b\right)=\prod _{i=1}^{N}\Gamma \left({\alpha }_{i}|a,b\right)$

The overall prior on $x$ can be analytically evaluated to be the Student-t distribution, which can be designed to peak at ${x}_{i}=0$ with appropriate choice of $a$ and $b$ . This enables the desired solution $x$ to be sparse. The RVM approach can be visualized using a graphical model similar to the one in "Sparse recovery via belief propagation" . Using the observed measurements $y$ , the posterior density on each ${x}_{i}$ is estimated by an iterative algorithm (e.g., Markov Chain Monte Carlo (MCMC) methods). For a detailed analysis of the RVM with a measurement noise prior, refer to  [link] , [link] .

Alternatively, we can eliminate the need to set the hyperparameters $a$ and $b$ as follows. Assuming Gaussian measurement noise with mean 0 and variance ${\sigma }^{2}$ , we can directly find the marginal log likelihood for $\alpha$ and maximize it by the EM algorithm (or directly differentiate) to find estimates for $\alpha$ .

$\mathcal{L}\left(\alpha \right)=logp\left(y|\alpha ,{\sigma }^{2}\right)=log\int p\left(y|x,{\sigma }^{2}\right)p\left(y|\alpha \right)dx.$

## Bayesian compressive sensing

Unfortunately, evaluation of the log-likelihood in the original RVM setup involves taking the inverse of an $N×N$ matrix, rendering the algorithm's complexity to be $O\left({N}^{3}\right)$ . A fast alternative algorithm for the RVM is available which monotonically maximizes the marginal likelihoods of the priors by a gradient ascent, resulting in an algorithm with complexity $O\left(N{M}^{2}\right)$ . Here, basis functions are sequentially added and deleted, thus building the model up constructively, and the true sparsity of the signal $x$ is exploited to minimize model complexity. This is known as Fast Marginal Likelihood Maximization, and is employed by the Bayesian Compressive Sensing (BCS) algorithm  [link] to efficiently evaluate the posterior densities of ${x}_{i}$ .

A key advantage of the BCS algorithm is that it enables evaluation of “error bars” on each estimated coefficient of $x$ ; these give us an idea of the (in)accuracies of these estimates. These error bars could be used to adaptively select the linear projections (i.e., the rows of the matrix $\Phi$ ) to reduce uncertainty in the signal. This provides an intriguing connection between CS and machine learning techniques such as experimental design and active learning  [link] , [link] .

are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
Got questions? Join the online conversation and get instant answers!

#### Get Jobilize Job Search Mobile App in your pocket Now! By IES Portal By JavaChamp Team By Jazzycazz Jackson By By OpenStax By OpenStax By Zarina Chocolate By OpenStax By Yacoub Jayoghli By Edgar Delgado