<< Chapter < Page Chapter >> Page >

Solving an equation using an identity

Solve the equation exactly using an identity: 3 cos θ + 3 = 2 sin 2 θ , 0 θ < 2 π .

If we rewrite the right side, we can write the equation in terms of cosine:

3 cos θ + 3 = 2 sin 2 θ 3 cos θ + 3 = 2 ( 1 cos 2 θ ) 3 cos θ + 3 = 2 2 cos 2 θ 2 cos 2 θ + 3 cos θ + 1 = 0 ( 2 cos θ + 1 ) ( cos θ + 1 ) = 0 2 cos θ + 1 = 0 cos θ = 1 2 θ = 2 π 3 , 4 π 3 cos θ + 1 = 0 cos θ = 1 θ = π

Our solutions are θ = 2 π 3 , 4 π 3 , π .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solving trigonometric equations with multiple angles

Sometimes it is not possible to solve a trigonometric equation with identities that have a multiple angle, such as sin ( 2 x ) or cos ( 3 x ) . When confronted with these equations, recall that y = sin ( 2 x ) is a horizontal compression    by a factor of 2 of the function y = sin x . On an interval of 2 π , we can graph two periods of y = sin ( 2 x ) , as opposed to one cycle of y = sin x . This compression of the graph leads us to believe there may be twice as many x -intercepts or solutions to sin ( 2 x ) = 0 compared to sin x = 0. This information will help us solve the equation.

Solving a multiple angle trigonometric equation

Solve exactly: cos ( 2 x ) = 1 2 on [ 0 , 2 π ) .

We can see that this equation is the standard equation with a multiple of an angle. If cos ( α ) = 1 2 , we know α is in quadrants I and IV. While θ = cos 1 1 2 will only yield solutions in quadrants I and II, we recognize that the solutions to the equation cos θ = 1 2 will be in quadrants I and IV.

Therefore, the possible angles are θ = π 3 and θ = 5 π 3 . So, 2 x = π 3 or 2 x = 5 π 3 , which means that x = π 6 or x = 5 π 6 . Does this make sense? Yes, because cos ( 2 ( π 6 ) ) = cos ( π 3 ) = 1 2 .

Are there any other possible answers? Let us return to our first step.

In quadrant I, 2 x = π 3 , so x = π 6 as noted. Let us revolve around the circle again:

2 x = π 3 + 2 π = π 3 + 6 π 3 = 7 π 3

so x = 7 π 6 .

One more rotation yields

2 x = π 3 + 4 π = π 3 + 12 π 3 = 13 π 3

x = 13 π 6 > 2 π , so this value for x is larger than 2 π , so it is not a solution on [ 0 , 2 π ) .

In quadrant IV, 2 x = 5 π 3 , so x = 5 π 6 as noted. Let us revolve around the circle again:

2 x = 5 π 3 + 2 π = 5 π 3 + 6 π 3 = 11 π 3

so x = 11 π 6 .

One more rotation yields

2 x = 5 π 3 + 4 π = 5 π 3 + 12 π 3 = 17 π 3

x = 17 π 6 > 2 π , so this value for x is larger than 2 π , so it is not a solution on [ 0 , 2 π ) .

Our solutions are x = π 6 , 5 π 6 , 7 π 6 , and  11 π 6 . Note that whenever we solve a problem in the form of sin ( n x ) = c , we must go around the unit circle n times.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solving right triangle problems

We can now use all of the methods we have learned to solve problems that involve applying the properties of right triangles and the Pythagorean Theorem    . We begin with the familiar Pythagorean Theorem, a 2 + b 2 = c 2 , and model an equation to fit a situation.

Using the pythagorean theorem to model an equation

Use the Pythagorean Theorem, and the properties of right triangles to model an equation that fits the problem.

One of the cables that anchors the center of the London Eye Ferris wheel to the ground must be replaced. The center of the Ferris wheel is 69.5 meters above the ground, and the second anchor on the ground is 23 meters from the base of the Ferris wheel. Approximately how long is the cable, and what is the angle of elevation (from ground up to the center of the Ferris wheel)? See [link] .

Basic diagram of a ferris wheel (circle) and its support cables (form a right triangle). One cable runs from the center of the circle to the ground (outside the circle), is perpendicular to the ground, and has length 69.5. Another cable of unknown length (the hypotenuse) runs from the center of the circle to the ground 23 feet away from the other cable at an angle of theta degrees with the ground. So, in closing, there is a right triangle with base 23, height 69.5, hypotenuse unknown, and angle between base and hypotenuse of theta degrees.

Using the information given, we can draw a right triangle. We can find the length of the cable with the Pythagorean Theorem.

a 2 + b 2 = c 2 ( 23 ) 2 + ( 69.5 ) 2 5359 5359 73.2  m

The angle of elevation is θ , formed by the second anchor on the ground and the cable reaching to the center of the wheel. We can use the tangent function to find its measure. Round to two decimal places.

tan θ = 69.5 23 tan −1 ( 69.5 23 ) 1.2522 71.69°

The angle of elevation is approximately 71.7° , and the length of the cable is 73.2 meters.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

1.1 exercise ke all qus
Swadesh Reply
answer and questions in exercise 11.2 sums
Yp Reply
how do u calculate inequality of irrational number?
Alaba
give me an example
Chris
and I will walk you through it
Chris
what is a algebra
Jallah Reply
hiiii
Swadesh
hii
Kundan
hii
Master
what is the identity of 1-cos²5x equal to?
liyemaikhaya Reply
__john __05
Kishu
Hi
Abdel
hi
Ye
hi
Nokwanda
C'est comment
Abdel
Hi
Amanda
hello
SORIE
Hiiii
Chinni
hello
Ranjay
hi
ANSHU
hiiii
Chinni
h r u friends
Chinni
yes
Hassan
so is their any Genius in mathematics here let chat guys and get to know each other's
SORIE
I speak French
Abdel
okay no problem since we gather here and get to know each other
SORIE
hi im stupid at math and just wanna join here
Yaona
lol nahhh none of us here are stupid it's just that we have Fast, Medium, and slow learner bro but we all going to work things out together
SORIE
it's 12
what is the function of sine with respect of cosine , graphically
Karl Reply
tangent bruh
Steve
cosx.cos2x.cos4x.cos8x
Aashish Reply
sinx sin2x is linearly dependent
cr Reply
what is a reciprocal
Ajibola Reply
The reciprocal of a number is 1 divided by a number. eg the reciprocal of 10 is 1/10 which is 0.1
Shemmy
 Reciprocal is a pair of numbers that, when multiplied together, equal to 1. Example; the reciprocal of 3 is ⅓, because 3 multiplied by ⅓ is equal to 1
Jeza
each term in a sequence below is five times the previous term what is the eighth term in the sequence
Funmilola Reply
I don't understand how radicals works pls
Kenny Reply
How look for the general solution of a trig function
collins Reply
stock therom F=(x2+y2) i-2xy J jaha x=a y=o y=b
Saurabh Reply
sinx sin2x is linearly dependent
cr
root under 3-root under 2 by 5 y square
Himanshu Reply
The sum of the first n terms of a certain series is 2^n-1, Show that , this series is Geometric and Find the formula of the n^th
amani Reply
cosA\1+sinA=secA-tanA
Aasik Reply
Wrong question
Saad

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask