# 10.2 Solving quadratic equations by factoring

 Page 1 / 1
This module is from Elementary Algebra</link>by Denny Burzynski and Wade Ellis, Jr. Methods of solving quadratic equations as well as the logic underlying each method are discussed. Factoring, extraction of roots, completing the square, and the quadratic formula are carefully developed. The zero-factor property of real numbers is reintroduced. The chapter also includes graphs of quadratic equations based on the standard parabola, y = x^2, and applied problems from the areas of manufacturing, population, physics, geometry, mathematics (numbers and volumes), and astronomy, which are solved using the five-step method.Objectives of this module: be able to solve quadratic equations by factoring.

## Overview

• Factoring Method
• Solving Mentally After Factoring

## Factoring method

To solve quadratic equations by factoring, we must make use of the zero-factor property.

1. Set the equation equal to zero, that is, get all the nonzero terms on one side of the equal sign and 0 on the other.

$a{x}^{2}+bx+c=0$

$\left(\right)\left(\right)=0$
3. By the zero-factor property, at least one of the factors must be zero, so, set each of the factors equal to 0 and solve for the variable.

## Sample set a

Solve the following quadratic equations. (We will show the check for problem 1.)

$\begin{array}{lllllllll}{x}^{2}-7x+12\hfill & =\hfill & 0.\hfill & \hfill & \hfill & \hfill & \hfill & \hfill & \begin{array}{l}\text{The\hspace{0.17em}equation\hspace{0.17em}is\hspace{0.17em}already\hspace{0.17em}}\\ \text{set\hspace{0.17em}equal\hspace{0.17em}to\hspace{0.17em}0}\text{.\hspace{0.17em}Factor}\text{.}\end{array}\hfill \\ \left(x-3\right)\left(x-4\right)\hfill & =\hfill & 0\hfill & \hfill & \hfill & \hfill & \hfill & \hfill & \text{Set\hspace{0.17em}each\hspace{0.17em}factor\hspace{0.17em}equal\hspace{0.17em}to\hspace{0.17em}0}\text{.}\hfill \\ \hfill x-3& =\hfill & 0\hfill & \hfill & \text{or}\hfill & \hfill & x-4\hfill & =\hfill & 0\hfill \\ \hfill x& =\hfill & 3\hfill & \hfill & \text{or}\hfill & \hfill & \hfill x& =\hfill & 4\hfill \end{array}$
$\begin{array}{llllll}Check:\text{\hspace{0.17em}}\text{If}\text{\hspace{0.17em}}x=3,\text{\hspace{0.17em}}{x}^{2}-7x\hfill & +\hfill & 12\hfill & =\hfill & 0\hfill & \hfill \\ \hfill {3}^{2}-7\text{\hspace{0.17em}}·\text{\hspace{0.17em}}3& +\hfill & 12\hfill & =\hfill & 0\hfill & \text{Is\hspace{0.17em}this\hspace{0.17em}correct?}\hfill \\ \hfill 9-21& +\hfill & 12\hfill & =\hfill & 0\hfill & \text{Is\hspace{0.17em}this\hspace{0.17em}correct?}\hfill \\ \hfill & \hfill & 0\hfill & =\hfill & 0\hfill & \text{Yes,\hspace{0.17em}this\hspace{0.17em}is\hspace{0.17em}correct}\text{.}\hfill \end{array}$

$\begin{array}{llllll}Check:\text{\hspace{0.17em}}\text{If}\text{\hspace{0.17em}}x=4,\text{\hspace{0.17em}}{x}^{2}-7x\hfill & +\hfill & 12\hfill & =\hfill & 0\hfill & \hfill \\ \hfill {4}^{2}-7\text{\hspace{0.17em}}·\text{\hspace{0.17em}}4& +\hfill & 12\hfill & =\hfill & 0\hfill & \text{Is\hspace{0.17em}this\hspace{0.17em}correct?}\hfill \\ \hfill 16-28& +\hfill & 12\hfill & =\hfill & 0\hfill & \text{Is\hspace{0.17em}this\hspace{0.17em}correct?}\hfill \\ \hfill & \hfill & 0\hfill & =\hfill & 0\hfill & \text{Yes,\hspace{0.17em}this\hspace{0.17em}is\hspace{0.17em}correct}\text{.}\hfill \end{array}$
Thus, the solutions to this equation are $x=3,\text{\hspace{0.17em}}4.$

$\begin{array}{lllll}\hfill {x}^{2}& =\hfill & 25.\hfill & \hfill & \text{Set\hspace{0.17em}the\hspace{0.17em}equation\hspace{0.17em}equal\hspace{0.17em}to\hspace{0.17em}}0.\hfill \\ \hfill {x}^{2}-25& =\hfill & 0\hfill & \hfill & \text{Factor}\text{.}\hfill \\ \left(x+5\right)\left(x-5\right)\hfill & =\hfill & 0\hfill & \hfill & \text{Set\hspace{0.17em}each\hspace{0.17em}factor\hspace{0.17em}equal\hspace{0.17em}to\hspace{0.17em}}0.\hfill \\ x+5=0\hfill & \text{or}\hfill & \hfill & x-5=0\hfill & \hfill \\ x=-5\hfill & \text{or}\hfill & \hfill & x=5\hfill & \hfill \end{array}$
Thus, the solutions to this equation are $x=5,-5.$

$\begin{array}{lllll}\hfill {x}^{2}& =\hfill & 2x.\hfill & \hfill & \text{Set\hspace{0.17em}the\hspace{0.17em}equation\hspace{0.17em}equal\hspace{0.17em}to\hspace{0.17em}}0.\hfill \\ {x}^{2}-2x\hfill & =\hfill & 0\hfill & \hfill & \text{Factor}\text{.}\hfill \\ x\left(x-2\right)\hfill & \hfill & \hfill & \hfill & \text{Set\hspace{0.17em}each\hspace{0.17em}factor\hspace{0.17em}equal\hspace{0.17em}to\hspace{0.17em}}0.\hfill \\ x=0\hfill & \text{or}\hfill & \hfill & x-2=0\hfill & \hfill \\ \hfill & \hfill & \hfill & x=2\hfill & \hfill \end{array}$
Thus, the solutions to this equation are $x=0,\text{\hspace{0.17em}}2.$

$\begin{array}{lllll}2{x}^{2}+7x-15\hfill & =\hfill & 0.\hfill & \hfill & \text{Factor}\text{.}\hfill \\ \left(2x-3\right)\left(x+5\right)\hfill & =\hfill & 0\hfill & \hfill & \text{Set\hspace{0.17em}each\hspace{0.17em}factor\hspace{0.17em}equal\hspace{0.17em}to\hspace{0.17em}}0.\hfill \\ 2x-3=0\hfill & \text{or}\hfill & \hfill & x+5=0\hfill & \hfill \\ 2x=3\hfill & \text{or}\hfill & \hfill & x=-5\hfill & \hfill \\ x=\frac{3}{2}\hfill & \hfill & \hfill & \hfill & \hfill \end{array}$
Thus, the solutions to this equation are $x=\frac{3}{2},-5.$

$63{x}^{2}=13x+6$
$\begin{array}{lllll}63{x}^{2}-13x-6\hfill & =\hfill & 0\hfill & \hfill & \hfill \\ \left(9x+2\right)\left(7x-3\right)\hfill & =\hfill & 0\hfill & \hfill & \hfill \\ 9x+2=0\hfill & \hfill & \text{or}\hfill & \hfill & 7x-3=0\hfill \\ 9x=-2\hfill & \hfill & \text{or}\hfill & \hfill & 7x=3\hfill \\ x=\frac{-2}{9}\hfill & \hfill & \text{or}\hfill & \hfill & x=\frac{3}{7}\hfill \end{array}$
Thus, the solutions to this equation are $x=\frac{-2}{9},\frac{3}{7}.$

## Practice set a

Solve the following equations, if possible.

$\left(x-7\right)\left(x+4\right)=0$

$x=7,\text{\hspace{0.17em}}-4$

$\left(2x+5\right)\left(5x-7\right)=0$

$x=\frac{-5}{2},\frac{7}{5}$

${x}^{2}+2x-24=0$

$x=4,\text{\hspace{0.17em}}-6$

$6{x}^{2}+13x-5=0$

$x=\frac{1}{3},\frac{-5}{2}$

$5{y}^{2}+2y=3$

$y=\frac{3}{5},-1$

$m\left(2m-11\right)=0$

$m=0,\frac{11}{2}$

$6{p}^{2}=-\left(5p+1\right)$

$p=\frac{-1}{3},\frac{-1}{2}$

${r}^{2}-49=0$

$r=7,-7$

## Solving mentally after factoring

Let’s consider problems 4 and 5 of Sample Set A in more detail. Let’s look particularly at the factorizations $\left(2x-3\right)\left(x+5\right)=0$ and $\left(9x+2\right)\left(7x-3\right)=0.$ The next step is to set each factor equal to zero and solve. We can solve mentally if we understand how to solve linear equations: we transpose the constant from the variable term and then divide by the coefficient of the variable.

## Sample set b

Solve the following equation mentally.

$\left(2x-3\right)\left(x+5\right)=0$
$\begin{array}{lllll}2x-3\hfill & =\hfill & 0\hfill & \hfill & \text{Mentally\hspace{0.17em}add\hspace{0.17em}3\hspace{0.17em}to\hspace{0.17em}both\hspace{0.17em}sides}\text{.\hspace{0.17em}The\hspace{0.17em}constant\hspace{0.17em}changes\hspace{0.17em}sign}\text{.}\hfill \\ \hfill 2x& =\hfill & 3\hfill & \hfill & \begin{array}{l}\text{Divide\hspace{0.17em}by\hspace{0.17em}2,\hspace{0.17em}the\hspace{0.17em}coefficient\hspace{0.17em}of\hspace{0.17em}}x\text{.\hspace{0.17em}The\hspace{0.17em}2\hspace{0.17em}divides\hspace{0.17em}the\hspace{0.17em}constant\hspace{0.17em}3\hspace{0.17em}into\hspace{0.17em}}\frac{3}{2}\text{.\hspace{0.17em}}\\ \text{The\hspace{0.17em}coefficient\hspace{0.17em}becomes\hspace{0.17em}the\hspace{0.17em}denominator}\text{.}\end{array}\hfill \\ \hfill x& =\hfill & \frac{3}{2}\hfill & \hfill & \hfill \\ \hfill x+5& =\hfill & 0\hfill & \hfill & \text{Mentally\hspace{0.17em}subtract\hspace{0.17em}5\hspace{0.17em}from\hspace{0.17em}both\hspace{0.17em}sides}\text{.\hspace{0.17em}The\hspace{0.17em}constant\hspace{0.17em}changes\hspace{0.17em}sign}\text{.}\hfill \\ \hfill x& =\hfill & -5\hfill & \hfill & \text{Divide\hspace{0.17em}by\hspace{0.17em}the\hspace{0.17em}coefficient\hspace{0.17em}of\hspace{0.17em}\hspace{0.17em}}x\text{,\hspace{0.17em}1}\text{.The\hspace{0.17em}coefficient\hspace{0.17em}becomes\hspace{0.17em}the\hspace{0.17em}denominator}\text{.}\hfill \\ \hfill x=\frac{-5}{1}& =\hfill & -5\hfill & \hfill & \hfill \\ \hfill x& =\hfill & -5\hfill & \hfill & \hfill \end{array}$
Now, we can immediately write the solution to the equation after factoring by looking at each factor, changing the sign of the constant, then dividing by the coefficient.

## Practice set b

Solve $\left(9x+2\right)\left(7x-3\right)=0$ using this mental method.

$x=-\frac{2}{9},\frac{3}{7}$

## Exercises

For the following problems, solve the equations, if possible.

$\left(x+1\right)\left(x+3\right)=0$

$x=-1,\text{\hspace{0.17em}}\text{\hspace{0.17em}}-3$

$\left(x+4\right)\left(x+9\right)=0$

$\left(x-5\right)\left(x-1\right)=0$

$x=1,\text{\hspace{0.17em}}\text{\hspace{0.17em}}5$

$\left(x-6\right)\left(x-3\right)=0$

$\left(x-4\right)\left(x+2\right)=0$

$x=-2,\text{\hspace{0.17em}}\text{\hspace{0.17em}}4$

$\left(x+6\right)\left(x-1\right)=0$

$\left(2x+1\right)\left(x-7\right)=0$

$x=-\frac{1}{2},\text{\hspace{0.17em}}\text{\hspace{0.17em}}7$

$\left(3x+2\right)\left(x-1\right)=0$

$\left(4x+3\right)\left(3x-2\right)=0$

$x=-\frac{3}{4},\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{2}{3}$

$\left(5x-1\right)\left(4x+7\right)=0$

$\left(6x+5\right)\left(9x-4\right)=0$

$x=-\frac{5}{6},\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{4}{9}$

$\left(3a+1\right)\left(3a-1\right)=0$

$x\left(x+4\right)=0$

$x=-4,\text{\hspace{0.17em}}\text{\hspace{0.17em}}0$

$y\left(y-5\right)=0$

$y\left(3y-4\right)=0$

$y=0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{4}{3}$

$b\left(4b+5\right)=0$

$x\left(2x+1\right)\left(2x+8\right)=0$

$x=-4,\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{\hspace{0.17em}}\frac{1}{2},\text{\hspace{0.17em}}\text{\hspace{0.17em}}0$

$y\left(5y+2\right)\left(2y-1\right)=0$

${\left(x-8\right)}^{2}=0$

$x=8$

${\left(x-2\right)}^{2}=0$

${\left(b+7\right)}^{2}=0$

$b=-7$

${\left(a+1\right)}^{2}=0$

$x{\left(x-4\right)}^{2}=0$

$x=0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}4$

$y{\left(y+9\right)}^{2}=0$

$y{\left(y-7\right)}^{2}=0$

$y=0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}7$

$y{\left(y+5\right)}^{2}=0$

${x}^{2}-4=0$

$x=-2,\text{\hspace{0.17em}}\text{\hspace{0.17em}}2$

${x}^{2}+9=0$

${x}^{2}+36=0$

no solution

${x}^{2}-25=0$

${a}^{2}-100=0$

$a=-10,\text{\hspace{0.17em}}\text{\hspace{0.17em}}10$

${a}^{2}-81=0$

${b}^{2}-49=0$

$b=7,\text{\hspace{0.17em}}\text{\hspace{0.17em}}-7$

${y}^{2}-1=0$

$3{a}^{2}-75=0$

$a=5,\text{\hspace{0.17em}}\text{\hspace{0.17em}}-5$

$5{b}^{2}-20=0$

${y}^{3}-y=0$

$y=0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}1,\text{\hspace{0.17em}}\text{\hspace{0.17em}}-1$

${a}^{2}=9$

${b}^{2}=4$

$b=2,\text{\hspace{0.17em}}\text{\hspace{0.17em}}-2$

${b}^{2}=1$

${a}^{2}=36$

$a=6,\text{\hspace{0.17em}}\text{\hspace{0.17em}}-6$

$3{a}^{2}=12$

$-2{x}^{2}=-4$

$x=\sqrt{2},\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\sqrt{2}$

$-2{a}^{2}=-50$

$-7{b}^{2}=-63$

$b=3,\text{\hspace{0.17em}}\text{\hspace{0.17em}}-3$

$-2{x}^{2}=-32$

$3{b}^{2}=48$

$b=4,\text{\hspace{0.17em}}\text{\hspace{0.17em}}-4$

${a}^{2}-8a+16=0$

${y}^{2}+10y+25=0$

$y=-5$

${y}^{2}+9y+16=0$

${x}^{2}-2x-1=0$

no solution

${a}^{2}+6a+9=0$

${a}^{2}+4a+4=0$

$a=-2$

${x}^{2}+12x=-36$

${b}^{2}-14b=-49$

$b=7$

$3{a}^{2}+18a+27=0$

$2{m}^{3}+4{m}^{2}+2m=0$

$m=0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}-1$

$3m{n}^{2}-36mn+36m=0$

${a}^{2}+2a-3=0$

$a=-3,\text{\hspace{0.17em}}\text{\hspace{0.17em}}1$

${a}^{2}+3a-10=0$

${x}^{2}+9x+14=0$

$x=-7,\text{\hspace{0.17em}}\text{\hspace{0.17em}}-2$

${x}^{2}-7x+12=3$

${b}^{2}+12b+27=0$

$b=-9,\text{\hspace{0.17em}}\text{\hspace{0.17em}}-3$

${b}^{2}-3b+2=0$

${x}^{2}-13x=-42$

$x=6,\text{\hspace{0.17em}}\text{\hspace{0.17em}}7$

${a}^{3}=-8{a}^{2}-15a$

$6{a}^{2}+13a+5=0$

$a=-\frac{5}{3},\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\frac{1}{2}$

$6{x}^{2}-4x-2=0$

$12{a}^{2}+15a+3=0$

$a=-\frac{1}{4},\text{\hspace{0.17em}}\text{\hspace{0.17em}}-1$

$18{b}^{2}+24b+6=0$

$12{a}^{2}+24a+12=0$

$a=-1$

$4{x}^{2}-4x=-1$

$2{x}^{2}=x+15$

$x=-\frac{5}{2},\text{\hspace{0.17em}}\text{\hspace{0.17em}}3$

$4{a}^{2}=4a+3$

$4{y}^{2}=-4y-2$

no solution

$9{y}^{2}=9y+18$

## Exercises for review

( [link] ) Simplify ${\left({x}^{4}{y}^{3}\right)}^{2}{\left(x{y}^{2}\right)}^{4}.$

${x}^{12}{y}^{14}$

( [link] ) Write ${\left({x}^{-2}{y}^{3}{w}^{4}\right)}^{-2}$ so that only positive exponents appear.

( [link] ) Find the sum: $\frac{x}{{x}^{2}-x-2}+\frac{1}{{x}^{2}-3x+2}.$

$\frac{{x}^{2}+1}{\left(x+1\right)\left(x-1\right)\left(x-2\right)}$

( [link] ) Simplify $\frac{\frac{1}{a}+\frac{1}{b}}{\frac{1}{a}-\frac{1}{b}}.$

( [link] ) Solve $\left(x+4\right)\left(3x+1\right)=0.$

$x=-4,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{-1}{3}$

how can chip be made from sand
is this allso about nanoscale material
Almas
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Eleven fifteenths of two more than a number is eight.
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform.

#### Get Jobilize Job Search Mobile App in your pocket Now! By By By Janet Forrester By OpenStax By Rhodes By OpenStax By OpenStax By Rhodes By John Gabrieli By OpenStax By OpenStax By Wey Hey