# 10.2 Non-right triangles: law of cosines  (Page 2/8)

 Page 2 / 8

Given two sides and the angle between them (SAS), find the measures of the remaining side and angles of a triangle.

1. Sketch the triangle. Identify the measures of the known sides and angles. Use variables to represent the measures of the unknown sides and angles.
2. Apply the Law of Cosines to find the length of the unknown side or angle.
3. Apply the Law of Sines    or Cosines to find the measure of a second angle.
4. Compute the measure of the remaining angle.

## Finding the unknown side and angles of a sas triangle

Find the unknown side and angles of the triangle in [link] .

First, make note of what is given: two sides and the angle between them. This arrangement is classified as SAS and supplies the data needed to apply the Law of Cosines.

Each one of the three laws of cosines begins with the square of an unknown side opposite a known angle. For this example, the first side to solve for is side $\text{\hspace{0.17em}}b,\text{\hspace{0.17em}}$ as we know the measurement of the opposite angle $\text{\hspace{0.17em}}\beta .$

Because we are solving for a length, we use only the positive square root. Now that we know the length $\text{\hspace{0.17em}}b,\text{\hspace{0.17em}}$ we can use the Law of Sines to fill in the remaining angles of the triangle. Solving for angle $\text{\hspace{0.17em}}\alpha ,\text{\hspace{0.17em}}$ we have

The other possibility for $\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}$ would be $\text{\hspace{0.17em}}\alpha =180°–56.3°\approx 123.7°.\text{\hspace{0.17em}}$ In the original diagram, $\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}$ is adjacent to the longest side, so $\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}$ is an acute angle and, therefore, $\text{\hspace{0.17em}}123.7°\text{\hspace{0.17em}}$ does not make sense. Notice that if we choose to apply the Law of Cosines    , we arrive at a unique answer. We do not have to consider the other possibilities, as cosine is unique for angles between $\text{\hspace{0.17em}}0°\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}180°.\text{\hspace{0.17em}}$ Proceeding with $\text{\hspace{0.17em}}\alpha \approx 56.3°,\text{\hspace{0.17em}}$ we can then find the third angle of the triangle.

$\gamma =180°-30°-56.3°\approx 93.7°$

The complete set of angles and sides is

$\begin{array}{ll}\alpha \approx 56.3°\begin{array}{cccc}& & & \end{array}\hfill & a=10\hfill \\ \beta =30°\hfill & b\approx 6.013\hfill \\ \text{\hspace{0.17em}}\gamma \approx 93.7°\hfill & c=12\hfill \end{array}$

Find the missing side and angles of the given triangle: $\text{\hspace{0.17em}}\alpha =30°,\text{\hspace{0.17em}}\text{\hspace{0.17em}}b=12,\text{\hspace{0.17em}}\text{\hspace{0.17em}}c=24.$

$a\approx 14.9,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\beta \approx 23.8°,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\gamma \approx 126.2°.$

## Solving for an angle of a sss triangle

Find the angle $\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}$ for the given triangle if side $\text{\hspace{0.17em}}a=20,\text{\hspace{0.17em}}$ side $\text{\hspace{0.17em}}b=25,\text{\hspace{0.17em}}$ and side $\text{\hspace{0.17em}}c=18.$

For this example, we have no angles. We can solve for any angle using the Law of Cosines. To solve for angle $\text{\hspace{0.17em}}\alpha ,\text{\hspace{0.17em}}$ we have

Given $\text{\hspace{0.17em}}a=5,b=7,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}c=10,\text{\hspace{0.17em}}$ find the missing angles.

$\alpha \approx 27.7°,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\beta \approx 40.5°,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\gamma \approx 111.8°$

## Solving applied problems using the law of cosines

Just as the Law of Sines provided the appropriate equations to solve a number of applications, the Law of Cosines is applicable to situations in which the given data fits the cosine models. We may see these in the fields of navigation, surveying, astronomy, and geometry, just to name a few.

find general solution of the Tanx=-1/root3,secx=2/root3
find general solution of the following equation
Nani
the value of 2 sin square 60 Cos 60
0.75
Lynne
0.75
Inkoom
when can I use sin, cos tan in a giving question
depending on the question
Nicholas
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
John
I want to learn the calculations
where can I get indices
I need matrices
Nasasira
hi
Raihany
Hi
Solomon
need help
Raihany
maybe provide us videos
Nasasira
Raihany
Hello
Cromwell
a
Amie
What do you mean by a
Cromwell
nothing. I accidentally press it
Amie
you guys know any app with matrices?
Khay
Ok
Cromwell
Solve the x? x=18+(24-3)=72
x-39=72 x=111
Suraj
Solve the formula for the indicated variable P=b+4a+2c, for b
Need help with this question please
b=-4ac-2c+P
Denisse
b=p-4a-2c
Suddhen
b= p - 4a - 2c
Snr
p=2(2a+C)+b
Suraj
b=p-2(2a+c)
Tapiwa
P=4a+b+2C
COLEMAN
b=P-4a-2c
COLEMAN
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has
how can we solve this problem
Sin(A+B) = sinBcosA+cosBsinA
Prove it
Eseka
Eseka
hi
Joel
yah
immy
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
7.5 and 37.5
Nando
how would this look as an equation?
Hayden
5x+x=45
Khay
find the sum of 28th term of the AP 3+10+17+---------
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n