# 7.5 Solving trigonometric equations  (Page 3/7)

 Page 3 / 7

Find all solutions for $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}x=\sqrt{3}.$

$\frac{\pi }{3}±\pi k$

## Identify all solutions to the equation involving tangent

Identify all exact solutions to the equation $\text{\hspace{0.17em}}2\left(\mathrm{tan}\text{\hspace{0.17em}}x+3\right)=5+\mathrm{tan}\text{\hspace{0.17em}}x,0\le x<2\pi .$

We can solve this equation using only algebra. Isolate the expression $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ on the left side of the equals sign.

$\begin{array}{cc}\hfill 2\left(\mathrm{tan}x\right)+2\left(3\right)& =5+\mathrm{tan}x\hfill \\ \hfill 2\mathrm{tan}\text{\hspace{0.17em}}x+6& =5+\mathrm{tan}\text{\hspace{0.17em}}x\hfill \\ \hfill \text{}2\mathrm{tan}x-\mathrm{tan}x& =5-6\hfill \\ \hfill \mathrm{tan}x& =-1\hfill \end{array}$

There are two angles on the unit circle that have a tangent value of $\text{\hspace{0.17em}}-1:\theta =\frac{3\pi }{4}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\theta =\frac{7\pi }{4}.$

## Solve trigonometric equations using a calculator

Not all functions can be solved exactly using only the unit circle. When we must solve an equation involving an angle other than one of the special angles, we will need to use a calculator. Make sure it is set to the proper mode, either degrees or radians, depending on the criteria of the given problem.

## Using a calculator to solve a trigonometric equation involving sine

Use a calculator to solve the equation $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\theta =0.8,$ where $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ is in radians.

Make sure mode is set to radians. To find $\text{\hspace{0.17em}}\theta ,$ use the inverse sine function. On most calculators, you will need to push the 2 ND button and then the SIN button to bring up the $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\text{\hspace{0.17em}}$ function. What is shown on the screen is ${\mathrm{sin}}^{-1}\left(\text{\hspace{0.17em}}.$ The calculator is ready for the input within the parentheses. For this problem, we enter $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(0.8\right),\text{\hspace{0.17em}}$ and press ENTER. Thus, to four decimals places,

${\mathrm{sin}}^{-1}\left(0.8\right)\approx 0.9273$

The solution is

$0.9273±2\pi k$

The angle measurement in degrees is

## Using a calculator to solve a trigonometric equation involving secant

Use a calculator to solve the equation $\text{\hspace{0.17em}}\mathrm{sec}\text{\hspace{0.17em}}\theta =-4,$ giving your answer in radians.

We can begin with some algebra.

$\begin{array}{c}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\mathrm{sec}\text{\hspace{0.17em}}\theta =-4\\ \frac{1}{\mathrm{cos}\text{\hspace{0.17em}}\theta }=-4\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta =-\frac{1}{4}\end{array}$

Check that the MODE is in radians. Now use the inverse cosine function.

Since $\text{\hspace{0.17em}}\frac{\pi }{2}\approx 1.57\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\pi \approx 3.14,$ 1.8235 is between these two numbers, thus $\text{\hspace{0.17em}}\theta \approx \text{1}\text{.8235}\text{\hspace{0.17em}}$ is in quadrant II. Cosine is also negative in quadrant III. Note that a calculator will only return an angle in quadrants I or II for the cosine function, since that is the range of the inverse cosine. See [link] .

So, we also need to find the measure of the angle in quadrant III. In quadrant III, the reference angle is $\text{\hspace{0.17em}}\theta \text{​}\text{​}\text{'}\approx \pi -\text{1}\text{.8235}\approx \text{1}\text{.3181}\text{.}\text{\hspace{0.17em}}$ The other solution in quadrant III is $\text{\hspace{0.17em}}\pi +\text{1}\text{.3181}\approx \text{4}\text{.4597}\text{.}$

The solutions are $\text{\hspace{0.17em}}1.8235±2\pi k\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}4.4597±2\pi k.$

Solve $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta =-0.2.$

$\theta \approx 1.7722±2\pi k\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\theta \approx 4.5110±2\pi k$

## Solving trigonometric equations in quadratic form

Solving a quadratic equation may be more complicated, but once again, we can use algebra as we would for any quadratic equation. Look at the pattern of the equation. Is there more than one trigonometric function in the equation, or is there only one? Which trigonometric function is squared? If there is only one function represented and one of the terms is squared, think about the standard form of a quadratic. Replace the trigonometric function with a variable such as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}u.\text{\hspace{0.17em}}$ If substitution makes the equation look like a quadratic equation, then we can use the same methods for solving quadratics to solve the trigonometric equations.

## Solving a trigonometric equation in quadratic form

Solve the equation exactly: $\text{\hspace{0.17em}}{\mathrm{cos}}^{2}\theta +3\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta -1=0,0\le \theta <2\pi .$

We begin by using substitution and replacing cos $\theta \text{\hspace{0.17em}}$ with $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ It is not necessary to use substitution, but it may make the problem easier to solve visually. Let $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta =x.\text{\hspace{0.17em}}$ We have

${x}^{2}+3x-1=0$

The equation cannot be factored, so we will use the quadratic formula $\text{\hspace{0.17em}}x=\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}.$

Replace $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ with $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta ,\text{\hspace{0.17em}}$ and solve. Thus,

Note that only the + sign is used. This is because we get an error when we solve $\text{\hspace{0.17em}}\theta ={\mathrm{cos}}^{-1}\left(\frac{-3-\sqrt{13}}{2}\right)\text{\hspace{0.17em}}$ on a calculator, since the domain of the inverse cosine function is $\text{\hspace{0.17em}}\left[-1,1\right].\text{\hspace{0.17em}}$ However, there is a second solution:

This terminal side of the angle lies in quadrant I. Since cosine is also positive in quadrant IV, the second solution is

I've run into this: x = r*cos(angle1 + angle2) Which expands to: x = r(cos(angle1)*cos(angle2) - sin(angle1)*sin(angle2)) The r value confuses me here, because distributing it makes: (r*cos(angle2))(cos(angle1) - (r*sin(angle2))(sin(angle1)) How does this make sense? Why does the r distribute once
How can you tell what type of parent function a graph is ?
generally by how the graph looks and understanding what the base parent functions look like and perform on a graph
William
if you have a graphed line, you can have an idea by how the directions of the line turns, i.e. negative, positive, zero
William
y=x will obviously be a straight line with a zero slope
William
y=x^2 will have a parabolic line opening to positive infinity on both sides of the y axis vice versa with y=-x^2 you'll have both ends of the parabolic line pointing downward heading to negative infinity on both sides of the y axis
William
y=x will be a straight line, but it will have a slope of one. Remember, if y=1 then x=1, so for every unit you rise you move over positively one unit. To get a straight line with a slope of 0, set y=1 or any integer.
Aaron
yes, correction on my end, I meant slope of 1 instead of slope of 0
William
what is f(x)=
I don't understand
Joe
Typically a function 'f' will take 'x' as input, and produce 'y' as output. As 'f(x)=y'. According to Google, "The range of a function is the complete set of all possible resulting values of the dependent variable (y, usually), after we have substituted the domain."
Thomas
Sorry, I don't know where the "Â"s came from. They shouldn't be there. Just ignore them. :-)
Thomas
Darius
Thanks.
Thomas
Â
Thomas
It is the Â that should not be there. It doesn't seem to show if encloses in quotation marks. "Â" or 'Â' ... Â
Thomas
Now it shows, go figure?
Thomas
what is this?
i do not understand anything
unknown
lol...it gets better
Darius
I've been struggling so much through all of this. my final is in four weeks 😭
Tiffany
this book is an excellent resource! have you guys ever looked at the online tutoring? there's one that is called "That Tutor Guy" and he goes over a lot of the concepts
Darius
thank you I have heard of him. I should check him out.
Tiffany
is there any question in particular?
Joe
I have always struggled with math. I get lost really easy, if you have any advice for that, it would help tremendously.
Tiffany
Sure, are you in high school or college?
Darius
Hi, apologies for the delayed response. I'm in college.
Tiffany
how to solve polynomial using a calculator
So a horizontal compression by factor of 1/2 is the same as a horizontal stretch by a factor of 2, right?
The center is at (3,4) a focus is at (3,-1), and the lenght of the major axis is 26
The center is at (3,4) a focus is at (3,-1) and the lenght of the major axis is 26 what will be the answer?
Rima
I done know
Joe
What kind of answer is that😑?
Rima
I had just woken up when i got this message
Joe
Rima
i have a question.
Abdul
how do you find the real and complex roots of a polynomial?
Abdul
@abdul with delta maybe which is b(square)-4ac=result then the 1st root -b-radical delta over 2a and the 2nd root -b+radical delta over 2a. I am not sure if this was your question but check it up
Nare
This is the actual question: Find all roots(real and complex) of the polynomial f(x)=6x^3 + x^2 - 4x + 1
Abdul
@Nare please let me know if you can solve it.
Abdul
I have a question
juweeriya
hello guys I'm new here? will you happy with me
mustapha
The average annual population increase of a pack of wolves is 25.
how do you find the period of a sine graph
Period =2π if there is a coefficient (b), just divide the coefficient by 2π to get the new period
Am
if not then how would I find it from a graph
Imani
by looking at the graph, find the distance between two consecutive maximum points (the highest points of the wave). so if the top of one wave is at point A (1,2) and the next top of the wave is at point B (6,2), then the period is 5, the difference of the x-coordinates.
Am
you could also do it with two consecutive minimum points or x-intercepts
Am
I will try that thank u
Imani
Case of Equilateral Hyperbola
ok
Zander
ok
Shella
f(x)=4x+2, find f(3)
Benetta
f(3)=4(3)+2 f(3)=14
lamoussa
14
Vedant
pre calc teacher: "Plug in Plug in...smell's good" f(x)=14
Devante
8x=40
Chris
Explain why log a x is not defined for a < 0
the sum of any two linear polynomial is what
Momo
how can are find the domain and range of a relations
the range is twice of the natural number which is the domain
Morolake
A cell phone company offers two plans for minutes. Plan A: $15 per month and$2 for every 300 texts. Plan B: $25 per month and$0.50 for every 100 texts. How many texts would you need to send per month for plan B to save you money?
6000
Robert
more than 6000
Robert
For Plan A to reach $27/month to surpass Plan B's$26.50 monthly payment, you'll need 3,000 texts which will cost an additional \$10.00. So, for the amount of texts you need to send would need to range between 1-100 texts for the 100th increment, times that by 3 for the additional amount of texts...
Gilbert
...for one text payment for 300 for Plan A. So, that means Plan A; in my opinion is for people with text messaging abilities that their fingers burn the monitor for the cell phone. While Plan B would be for loners that doesn't need their fingers to due the talking; but those texts mean more then...
Gilbert