# 3.3 Solve mixture applications

 Page 1 / 10
By the end of this section, you will be able to:
• Solve coin word problems
• Solve ticket and stamp word problems
• Solve mixture word problems
• Use the mixture model to solve investment problems using simple interest

Before you get started, take this readiness quiz.

1. Multiply: 14(0.25).
If you missed this problem, review [link] .
2. Solve: $0.25x+0.10\left(x+4\right)=2.5.$
If you missed this problem, review [link] .
3. The number of dimes is three more than the number of quarters. Let q represent the number of quarters. Write an expression for the number of dimes.
If you missed this problem, review [link] .

## Solve coin word problems

In mixture problems    , we will have two or more items with different values to combine together. The mixture model is used by grocers and bartenders to make sure they set fair prices for the products they sell. Many other professionals, like chemists, investment bankers, and landscapers also use the mixture model.

Doing the Manipulative Mathematics activity Coin Lab will help you develop a better understanding of mixture word problems.

We will start by looking at an application everyone is familiar with—money!

Imagine that we take a handful of coins from a pocket or purse and place them on a desk. How would we determine the value of that pile of coins? If we can form a step-by-step plan for finding the total value of the coins, it will help us as we begin solving coin word problems.

So what would we do? To get some order to the mess of coins, we could separate the coins into piles according to their value. Quarters would go with quarters, dimes with dimes, nickels with nickels, and so on. To get the total value of all the coins, we would add the total value of each pile.

How would we determine the value of each pile? Think about the dime pile—how much is it worth? If we count the number of dimes, we’ll know how many we have—the number of dimes.

But this does not tell us the value of all the dimes. Say we counted 17 dimes, how much are they worth? Each dime is worth $0.10—that is the value of one dime. To find the total value of the pile of 17 dimes, multiply 17 by$0.10 to get $1.70. This is the total value of all 17 dimes. This method leads to the following model. ## Total value of coins For the same type of coin, the total value of a number of coins is found by using the model $number·value=total\phantom{\rule{0.2em}{0ex}}value$ where number is the number of coins value is the value of each coin total value is the total value of all the coins The number of dimes times the value of each dime equals the total value of the dimes. $\begin{array}{ccc}\hfill number·value& =\hfill & total\phantom{\rule{0.2em}{0ex}}value\hfill \\ \hfill 17·0.10& =\hfill & \text{}1.70\hfill \end{array}$ We could continue this process for each type of coin, and then we would know the total value of each type of coin. To get the total value of all the coins, add the total value of each type of coin. Let’s look at a specific case. Suppose there are 14 quarters, 17 dimes, 21 nickels, and 39 pennies. The total value of all the coins is$6.64.

Notice how the chart helps organize all the information! Let’s see how we use this method to solve a coin word problem.

Adalberto has $2.25 in dimes and nickels in his pocket. He has nine more nickels than dimes. How many of each type of coin does he have? ## Solution Step 1. Read the problem. Make sure all the words and ideas are understood. • Determine the types of coins involved. Think about the strategy we used to find the value of the handful of coins. The first thing we need is to notice what types of coins are involved. Adalberto has dimes and nickels. • Create a table to organize the information. See chart below. • Label the columns “type,” “number,” “value,” “total value.” • List the types of coins. • Write in the value of each type of coin. • Write in the total value of all the coins. We can work this problem all in cents or in dollars. Here we will do it in dollars and put in the dollar sign ($) in the table as a reminder.
The value of a dime is $0.10 and the value of a nickel is$0.05. The total value of all the coins is $2.25. The table below shows this information. Step 2. Identify what we are looking for. • We are asked to find the number of dimes and nickels Adalberto has. Step 3. Name what we are looking for. Choose a variable to represent that quantity. • Use variable expressions to represent the number of each type of coin and write them in the table. • Multiply the number times the value to get the total value of each type of coin. Next we counted the number of each type of coin. In this problem we cannot count each type of coin—that is what you are looking for—but we have a clue. There are nine more nickels than dimes. The number of nickels is nine more than the number of dimes. $\begin{array}{ccc}\hfill \text{Let}\phantom{\rule{0.2em}{0ex}}d& =\hfill & \text{number of dimes.}\hfill \\ \hfill d+9& =\hfill & \text{number of nickels}\hfill \end{array}$ Fill in the “number” column in the table to help get everything organized. Now we have all the information we need from the problem! We multiply the number times the value to get the total value of each type of coin. While we do not know the actual number, we do have an expression to represent it. And so now multiply $number·value=total\phantom{\rule{0.2em}{0ex}}value.$ See how this is done in the table below. Notice that we made the heading of the table show the model. Step 4. Translate into an equation. It may be helpful to restate the problem in one sentence. Translate the English sentence into an algebraic equation. Write the equation by adding the total values of all the types of coins. Step 5. Solve the equation using good algebra techniques.  Now solve this equation. Distribute. Combine like terms. Subtract 0.45 from each side. Divide. So there are 12 dimes. The number of nickels is $d+9$ . 21 $\phantom{\rule{1.2em}{0ex}}$ Step 6. Check the answer in the problem and make sure it makes sense. Does this check? $\begin{array}{cccc}\text{12 dimes}\hfill & & & 12\left(0.10\right)=1.20\hfill \\ \text{21 nickels}\hfill & & & 21\left(0.05\right)=\underset{\text{____}}{1.05}\hfill \\ & & & \phantom{\rule{4.5em}{0ex}}2.25✓\hfill \end{array}$ Step 7. Answer the question with a complete sentence. • Adalberto has twelve dimes and twenty-one nickels. If this were a homework exercise, our work might look like the following. #### Questions & Answers integer greater than 2 and less than 12 Emily Reply 2 < x < 12 Felix I'm guessing you are doing inequalities... Felix Actually, translating words into algebraic expressions / equations... Felix He charges$125 per job. His monthly expenses are $1,600. How many jobs must he work in order to make a profit of at least$2,400?
at least 20
Ayla
what are the steps?
Alicia
6.4 jobs
Grahame
32
Grahame
1600+2400= total amount with expenses. 4000/125= number of jobs needed to make that min profit of 2400. answer is 32
Orlando
He must work 32 jobs to make a profit
POP
what is algebra
repeated addition and subtraction of the order of operations. i love algebra I'm obsessed.
Shemiah
hi
Krekar
One-fourth of the candies in a bag of M&M’s are red. If there are 23 red candies, how many candies are in the bag?
they are 92 candies in the bag
POP
rectangular field solutions
What is this?
Donna
t
muqtaar
the proudact of 3x^3-5×^2+3 and 2x^2+5x-4 in z7[x]/ is
?
Choli
a rock is thrown directly upward with an initial velocity of 96feet per second from a cliff 190 feet above a beach. The hight of tha rock above the beach after t second is given by the equation h=_16t^2+96t+190
Usman
Stella bought a dinette set on sale for $725. The original price was$1,299. To the nearest tenth of a percent, what was the rate of discount?
44.19%
Scott
40.22%
Terence
44.2%
Orlando
I don't know
Donna
if you want the discounted price subtract $725 from$1299. then divide the answer by $1299. you get 0.4419... but as percent you get 44.19... but to the nearest tenth... round .19 to .2 and you get 44.2% Orlando you could also just divide$725/$1299 and then subtract it from 1. then you get the same answer. Orlando p mulripied-5 and add 30 to it Tausif Reply p mulripied-5 and add30 Tausif p mulripied-5 and addto30 Tausif how muqtaar Can you explain further Monica Reply p mulripied-5 and add to 30 Tausif -5p+30? Corey p=-5+30 Jacob How do you find divisible numbers without a calculator? Jacob Reply TAKE OFF THE LAST DIGIT AND MULTIPLY IT 9. SUBTRACT IT THE DIGITS YOU HAVE LEFT. IF THE ANSWER DIVIDES BY 13(OR IS ZERO), THEN YOUR ORIGINAL NUMBER WILL ALSO DIVIDE BY 13!IS DIVISIBLE BY 13 BAINAMA When she graduates college, Linda will owe$43,000 in student loans. The interest rate on the federal loans is 4.5% and the rate on the private bank loans is 2%. The total interest she owes for one year was $1,585. What is the amount of each loan? Ariana Reply Sean took the bus from Seattle to Boise, a distance of 506 miles. If the trip took 7 2/3 hours, what was the speed of the bus? Kirisma Reply 66miles/hour snigdha How did you work it out? Esther s=mi/hr 2/3~0.67 s=506mi/7.67hr = ~66 mi/hr Orlando No; 65m/hr albert hello, I have algebra phobia. Subtracting negative numbers always seem to get me confused. Alicia Reply what do you need help in? Felix subtracting a negative....is adding!! Heather look at the numbers if they have different signs, it's like subtracting....but you keep the sign of the largest number... Felix for example.... -19 + 7.... different signs...subtract.... 12 keep the sign of the "largest" number 19 is bigger than 7.... 19 has the negative sign... Therefore, -12 is your answer... Felix —12 Niazmohammad Thanks Felix.l also get confused with signs. Esther Thank you for this Shatey ty Graham think about it like you lost$19 (-19), then found $7(+7). Totally you lost just$12 (-12)
Annushka
I used to struggle a lot with negative numbers and math in general what I typically do is look at it in terms of money I have -$5 in my account I then take out 5 more dollars how much do I have in my account well-$10 ... I also for a long time would draw it out on a number line to visualize it
Meg
practicing with smaller numbers to understand then working with larger numbers helps too and the song/rhyme same sign add and keep opposite signs subtract keep the sign of the bigger # then you'll be exact
Meg
hi
albert
Bruce drives his car for his job. The equation R=0.575m+42 models the relation between the amount in dollars, R, that he is reimbursed and the number of miles, m, he drives in one day. Find the amount Bruce is reimbursed on a day when he drives 220 miles
168.50=R
Heather
john is 5years older than wanjiru.the sum of their years is27years.what is the age of each
46
mustee
j 17 w 11
Joseph
john is 16. wanjiru is 11.
Felix
27-5=22 22÷2=11 11+5=16
Joyce