<< Chapter < Page Chapter >> Page >
c ^ j 0 k / c j 0 k , σ 2 N ( c j 0 k , σ 2 )
d ^ j k / c j k , σ 2 N ( d j k , σ 2 )

The Bayesian approach imposes an apriori model for the wavelets coefficients designed to capture the sparseness of the wavelet expansion common to most applications. An usual prior model for each wavelet coefficient d ^ j k is a mixture of two distributions, one of them associated to negligable coefficients and the other to significant coefficients. Two types of mixtures have been widely used. One of them employs two normal distributions while theother uses one normal distribution and one point mass at zero.

After mathematical manipulation, it can be shown that an estimator for the underlying signal can be written as (Equation ):

g ^ B R ( t ) = k = 0 2 j 0 - 1 c ^ j 0 k n φ j 0 k ( t ) + j = j 0 J - 1 k = 0 2 j - 1 B R ( d j k | ( d j k , σ 2 ) ) n ψ j k ( t )

i.e. the scaling coefficients are estimated by the empirical scaling coefficients while the wavelet coefficients are estimated by a Bayesian rule (BR), taking into account the obtained empirical wavelet coefficient and the noise level.

Shrinkage estimates based on deterministic/stochastic decompositions

huang2000 proposed a method that takes into account the value of the prior mean for each wavelet coefficient, by introducing a estimator for the parameter into the general wavelet shrinkage model. These authorsassumed thatthe undelying signal is composed of a piecewise deterministic portion with an added zero mean stochastic part.

If c ^ j 0 is the vector of empirical scaling coefficients, d ^ j the vector of empirical wavelet coefficients, c j 0 the vector of underlying scaling coefficients, and d j the vector of underlying wavelet coefficients, then the Bayesian model (Equation ):

ω / ( β , σ 2 ) N ( β , σ 2 I )

with ω = ( c ^ j 0 , d ^ j 0 , ... , d ^ J - 1 ' ) ' and the underlying signal β = ( c j 0 ' , d j 0 ' , ... , d J - 1 ' ) ' is assumed to follow an apriori distribution (Equation )

β / ( μ , θ ) N ( μ , Σ ( θ ) )

where μ is the deterministic mean structure and Σ ( θ ) accounts for the uncertainty and value correlation in the underlying signal. Notice that if η following a distribution N ( 0 , Σ ( θ ) ) is defined as the stochastic component representing small variation (high frequency) in the signal, then μ can be interpretated as the stochastic component accounting for the large-scale variation in β . So, it is possible to rewrite β as (Equation ),

β = μ + η

Using this model, a shrinkage rule can be established by calculating the mean of β conditional on σ 2 which is expressed as (Equation ),

E β / ( ω , σ 2 ) = μ + Σ ( θ ) ( Σ ( θ ) + σ 2 I ) ( ω - μ )

Numerical simulations

Description of the scheme

In order to assess the efficiency and accuracy of the proposed methods, a number of simulations have been conducted. To this aim, data have been generated according to the following scheme

y i = f ( x i ) + ϵ i , { ϵ i } N ( 0 , σ 2 )

where the data { x i } are considered equally spaced in the interval [ 0 , 1 ] . The signal-to-noise ratio has been taken equal to 3. In these simulations the Symmlet 8 wavelet basis has been used. Given the random nature of { ϵ i } , 100 realizations of the function { y i } have been produced. This has been done in order to apply the comparison criteria to the ensemble average of the realizations. Since the primary goal of the simulations is the comparison ofthe different denoising methods, the following criteria are introduced:

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Elec 301 projects fall 2008. OpenStax CNX. Jan 22, 2009 Download for free at http://cnx.org/content/col10633/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elec 301 projects fall 2008' conversation and receive update notifications?