<< Chapter < Page Chapter >> Page >

One form of sympatric speciation can begin with a chromosomal error during meiosis or the formation of a hybrid individual with too many chromosomes. Polyploidy is a condition in which a cell, or organism, has an extra set, or sets, of chromosomes. Scientists have identified two main types of polyploidy that can lead to reproductive isolation of an individual in the polyploid state. In some cases a polyploid individual will have two or more complete sets of chromosomes from its own species in a condition called autopolyploidy ( [link] ). The prefix “auto” means self, so the term means multiple chromosomes from one’s own species. Polyploidy results from an error in meiosis in which all of the chromosomes move into one cell instead of separating.

Autopolyploidy results in offspring with two sets of chromosomes. In the example shown, a diploid parent (2n) produces polyploid offspring (4n).
Autopolyploidy results when mitosis is not followed by cytokinesis.

For example, if a plant species with 2 n = 6 produces autopolyploid gametes that are also diploid (2 n = 6, when they should be n = 3), the gametes now have twice as many chromosomes as they should have. These new gametes will be incompatible with the normal gametes produced by this plant species. But they could either self-pollinate or reproduce with other autopolyploid plants with gametes having the same diploid number. In this way, sympatric speciation can occur quickly by forming offspring with 4 n called a tetraploid. These individuals would immediately be able to reproduce only with those of this new kind and not those of the ancestral species. The other form of polyploidy occurs when individuals of two different species reproduce to form a viable offspring called an allopolyploid. The prefix “allo” means “other” (recall from allopatric); therefore, an allopolyploid occurs when gametes from two different species combine. [link] illustrates one possible way an allopolyploidy can form. Notice how it takes two generations, or two reproductive acts, before the viable fertile hybrid results.

Alloploidy results from viable matings between two species with different numbers of chromosomes. In the example shown, species one has three sets of chromosomes, and species two has two sets of chromosomes. When a normal gamete from species one (with three chromosomes) fuses with a polyploid gamete from species two (with two sets of chromosomes), a zygote with seven chromosomes results. An offspring from this mating produces a polyploid gamete, with seven chromosomes. If this polyploid gamete fuses with a normal gamete from species one, which has three chromosomes, the resulting offspring will have five viable sets of chromosomes.
Alloploidy results when two species mate to produce viable offspring. In the example shown, a normal gamete from one species fuses with a polyploid gamete from another. Two matings are necessary to produce viable offspring.

The cultivated forms of wheat, cotton, and tobacco plants are all allopolyploids. Although polyploidy occurs occasionally in animals, most chromosomal abnormalities in animals are lethal; it takes place most commonly in plants. Scientists have discovered more than 1/2 of all plant species studied relate back to a species evolved through polyploidy.

Sympatric speciation may also take place in ways other than polyploidy. For example, imagine a species of fish that lived in a lake. As the population grew, competition for food also grew. Under pressure to find food, suppose that a group of these fish had the genetic flexibility to discover and feed off another resource that was unused by the other fish. What if this new food source was found at a different depth of the lake? Over time, those feeding on the second food source would interact more with each other than the other fish; therefore they would breed together as well. Offspring of these fish would likely behave as their parents and feed and live in the same area, keeping them separate from the original population. If this group of fish continued to remain separate from the first population, eventually sympatric speciation might occur as more genetic differences accumulated between them.

This scenario does play out in nature, as do others that lead to reproductive isolation. One such place is Lake Victoria in Africa, famous for its sympatric speciation of cichlid fish. Researchers have found hundreds of sympatric speciation events in these fish, which have not only happened in great number, but also over a short period of time. [link] shows this type of speciation among a cichlid fish population in Nicaragua. In this locale, two types of cichlids live in the same geographic location; however, they have come to have different morphologies that allow them to eat various food sources.

The illustrations show two species of cichlid fish which are similar in appearance except that one has thin lips, and one has thick lips.
Cichlid fish from Lake Apoyeque, Nicaragua, show evidence of sympatric speciation. Lake Apoyeque, a crater lake, is 1800 years old, but genetic evidence indicates that the lake was populated only 100 years ago by a single population of cichlid fish. Nevertheless, two populations with distinct morphologies and diets now exist in the lake, and scientists believe these populations may be in an early stage of speciation.

Finally, a well-documented example of ongoing sympatric speciation occurred in the apple maggot fly, Rhagoletis pomonella, which arose as an isolated population sometime after the introduction of the apple into North America. The native population of flies fed on hawthorn species and is host-specific: it only infests hawthorn trees. Importantly, it also uses the trees as a location to meet for mating. It is hypothesized that either through mutation or a behavioral mistake, flies jumped hosts and met and mated in apple trees, subsequently laying their eggs in apple fruit. The offspring matured and kept their preference for the apple trees effectively dividing the original population into two new populations separated by host species, not by geography. The host jump took place in the nineteenth century, but there are now measureable differences between the two populations of fly. It seems likely that host specificity of parasites in general is a common cause of sympatric speciation.

Section summary

Speciation occurs along two main pathways: geographic separation (allopatric speciation) and through mechanisms that occur within a shared habitat (sympatric speciation). Both pathways force reproductive isolation between populations. Sympatric speciation can occur through errors in meiosis that form gametes with extra chromosomes, called polyploidy. Autopolyploidy occurs within a single species, whereas allopolyploidy occurs because of a mating between closely related species. Once the populations are isolated, evolutionary divergence can take place leading to the evolution of reproductive isolating traits that prevent interbreeding should the two populations come together again. The reduced viability of hybrid offspring after a period of isolation is expected to select for stronger inherent isolating mechanisms.

Questions & Answers

now that we have an estimate for the diameter of the cell.what estimate can we make about the volume of the cell?
faxhood Reply
why too much insulin result in low blood sugar
Leri Reply
difference between DNA and RNA
Eyitayo Reply
DNA is deoxyribonuclaic acid. Deoxy refers to a lack of oxygen. The Ribose moity is missing an OH group. I think it is missing from the second C of the ring. RNA is ribonucleic acid. DNA has our genetic code in on it. RNA is translated from DNA and carries the blue print for protein synthesis.
The OH group on RNA prevents it from being reactive. But it is very unstable though. Would you want such a power tool floating around in your body, no. And you have three types of RNA: mRNA, tRNA and rRNA. Please let me know it this helped?😄
what determines the aeration level in the soil
Shola Reply
what is homeostasis?
Sarita Reply
What is biology
Don Reply
Biology z the study of life
what's biology
biology is the study of living nd none living organism
Biology is the study of life
yes Sir
what's cell biology
biology is the study of life
what is asexual reproduction,?
Awoi Reply
A type of reproduction which does not involve the fusion of gametes or a change in the number of chromosomes
Reproduction without sex... In which form a single organism or cell makes a copy of itself.
Please explain the concept of mitosis and meiosis
I guess you could use it for study buddies and brushing up on what you need to
what is mitosis
Asexual reproduction?
why pepsin and trypsin released in active form?
mitosis is the type cell division in which two daughter cells have same no. of chormosomes
chromosome number remains the same in mitosis
Yrr help me.
Physical chemistry..... Koi h jo mujhe physical chem ki notes send kr ske
what is asexual reproduction
what makes golgi body in plants
Abdulkareem Reply
name the membrane of the plants
how can turners syndrome be corrected before birth
which animal survive from being preyed just because of being humble, slow, and not aggressive
Plants have golgi body's also. Plants are eukaryotic cells. And membrane bound organelles are a characteristic of eukaryotic cells. Moreover golgi body's are creatted from the ER. Also do not forget plants have plastids and animal cells do not.
During organs transplantation, the organs cannot be taken from just anybody since the graft would be rejected sooner or later due to
Liter Reply
Non-MHC compatibility on the organ and an attack from the patient's immune system.
what makes golgi body in plants
why trypsin and pepsin released in active form
Let us remember MHC'S on our cells. This is how our cells determine self from n o n s e l f. Transplanted tissue has to have a certain amount markers. These have to match to the recipiant's markers. Even with this, immunosuppresant medacine is prescribed to the recipient.
Even with these measures the body may still reject the transport. This can occur even after the recipient excepting the transport for some time.
what is integument system
Joy Reply
This system is our skin. This includes the skin lining our alimentary system which includes the tissue from our mouth to our anus. Our skin is our largest organ system. It is mostly made up of epithelial tissue.
Cellular respiration
Lucy Reply
This is how our cells make energy. They use glucose + oxygen. There are other facors involves also. But these are the main two reactant used, for aerobic respiration. The main product is ATP. ATP is a high energy molecule which is paramount for life.
what are the characteristics of living things
Ruth Reply
Movement Respiration Nutrition/Feeding Irritability/Sensitivity Growth Excretion Reproduction Deat/Life span
What makes children from the same father and mother sometimes don't look alike?
One of the main one's is the abilit reproduce. That is why viruses are not considered living. Because they do not have the ability to replicate on they own.
identification of problems
Nana Reply
what happens in the process of raising the human arms
what is biology
Brandi Reply
first step in scientific method
The study of living things.
In an investigation the pancreatic duct of a mammal was blocked.It was found that the blood sugar regulation remained normal while food digestion was impaired.Explain
Mac Reply
To begin with, obstruction of pancreatic duct will alter the blood sugar level as the juices responsible for glucose regulation will be rendered inconsequential. This will in turn affect the rate of digestion and absorbtion of digested food substances by the Villus .

Get the best Concepts of biology course in your pocket!

Source:  OpenStax, Concepts of biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11487/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of biology' conversation and receive update notifications?