<< Chapter < Page Chapter >> Page >
S = s s + 1 h ( s = 1 / 2 for electrons), size 12{s=1/2} {}

where s size 12{s} {} is defined to be the spin quantum number    . This is very similar to the quantization of L size 12{L} {} given in L = l l + 1 h size 12{L= sqrt {l left (l+1 right )} { {h} over {2π} } } {} , except that the only value allowed for s size 12{s} {} for electrons is 1/2.

The direction of intrinsic spin is quantized , just as is the direction of orbital angular momentum. The direction of spin angular momentum along one direction in space, again called the z size 12{z} {} -axis, can have only the values

S z = m s h size 12{S rSub { size 8{z} } =m rSub { size 8{s} } { {h} over {2π} } } {} m s = 1 2 , + 1 2 size 12{ left (m rSub { size 8{s} } = - { {1} over {2} } , + { {1} over {2} } right )} {}

for electrons. S z size 12{S rSub { size 8{z} } } {} is the z size 12{z} {} -component of spin angular momentum and m s size 12{S rSub { size 8{z} } } {} is the spin projection quantum number    . For electrons, s size 12{s} {} can only be 1/2, and m s size 12{m rSub { size 8{s} } } {} can be either +1/2 or –1/2. Spin projection m s =+ 1 / 2 size 12{m rSub { size 8{s} } "=+"1/2} {} is referred to as spin up , whereas m s = 1 / 2 size 12{m rSub { size 8{s} } = - 1/2} {} is called spin down . These are illustrated in [link] .

Intrinsic spin

In later chapters, we will see that intrinsic spin is a characteristic of all subatomic particles. For some particles s size 12{s} {} is half-integral, whereas for others s size 12{s} {} is integral—there are crucial differences between half-integral spin particles and integral spin particles. Protons and neutrons, like electrons, have s = 1 / 2 size 12{s=1/2} {} , whereas photons have s = 1 size 12{s=1} {} , and other particles called pions have s = 0 size 12{s=0} {} , and so on.

To summarize, the state of a system, such as the precise nature of an electron in an atom, is determined by its particular quantum numbers. These are expressed in the form n, l, m l , m s —see [link] For electrons in atoms , the principal quantum number can have the values n = 1, 2, 3, ... . Once n is known, the values of the angular momentum quantum number are limited to l = 1, 2, 3, ... , n 1 . For a given value of l , the angular momentum projection quantum number can have only the values m l = l , l + 1, ... , 1, 0, 1, ... , l 1, l . Electron spin is independent of n, l, and m l , always having s = 1 / 2 . The spin projection quantum number can have two values, m s = 1 / 2 or 1 / 2 .

Atomic quantum numbers
Name Symbol Allowed values
Principal quantum number n 1, 2, 3, ...
Angular momentum l 0, 1, 2, ... n 1
Angular momentum projection m l l , l + 1, ... , 1, 0, 1, ... , l 1, l ( or 0, ±1, ±2, ... , ± l )
Spin The spin quantum number s is usually not stated, since it is always 1/2 for electrons s 1/2 ( electrons )
Spin projection m s 1/2, + 1/2

[link] shows several hydrogen states corresponding to different sets of quantum numbers. Note that these clouds of probability are the locations of electrons as determined by making repeated measurements—each measurement finds the electron in a definite location, with a greater chance of finding the electron in some places rather than others. With repeated measurements, the pattern of probability shown in the figure emerges. The clouds of probability do not look like nor do they correspond to classical orbits. The uncertainty principle actually prevents us and nature from knowing how the electron gets from one place to another, and so an orbit really does not exist as such. Nature on a small scale is again much different from that on the large scale.

The image shows probability clouds for the electron in the ground state and several excited states of hydrogen. Sets of quantum numbers given as n l m subscript l are shown for each state. The ground state is zero zero zero. The probability of finding the electron is indicated by the shade of color.
Probability clouds for the electron in the ground state and several excited states of hydrogen. The nature of these states is determined by their sets of quantum numbers, here given as n , l , m l size 12{ left (n, l, m rSub { size 8{l} } right )} {} . The ground state is (0, 0, 0); one of the possibilities for the second excited state is (3, 2, 1). The probability of finding the electron is indicated by the shade of color; the darker the coloring the greater the chance of finding the electron.

We will see that the quantum numbers discussed in this section are valid for a broad range of particles and other systems, such as nuclei. Some quantum numbers, such as intrinsic spin, are related to fundamental classifications of subatomic particles, and they obey laws that will give us further insight into the substructure of matter and its interactions.

Phet explorations: stern-gerlach experiment

The classic Stern-Gerlach Experiment shows that atoms have a property called spin. Spin is a kind of intrinsic angular momentum, which has no classical counterpart. When the z-component of the spin is measured, one always gets one of two values: spin up or spin down.

Stern-Gerlach Experiment

Section summary

  • Quantum numbers are used to express the allowed values of quantized entities. The principal quantum number n size 12{n} {} labels the basic states of a system and is given by
    n = 1, 2, 3, . . . . size 12{n=1, 2, 3, "." "." "." } {}
  • The magnitude of angular momentum is given by
    L = l l + 1 h l = 0, 1, 2, ... , n 1 ,
    where l size 12{l} {} is the angular momentum quantum number. The direction of angular momentum is quantized, in that its component along an axis defined by a magnetic field, called the z size 12{z} {} -axis is given by
    L z = m l h size 12{L rSub { size 8{z} } =m rSub { size 8{l} } { {h} over {2π} } } {} m l = l , l + 1, ... , 1, 0, 1, ... l 1, l ,
    where L z size 12{L rSub { size 8{z} } } {} is the z size 12{z} {} -component of the angular momentum and m l size 12{m rSub { size 8{l} } } {} is the angular momentum projection quantum number. Similarly, the electron’s intrinsic spin angular momentum S size 12{S} {} is given by
    S = s s + 1 h ( size 12{S= sqrt {s left (s+1 right )} { {h} over {2π} } } {} s = 1 / 2 for electrons), size 12{s=1/2} {}
    s size 12{s} {} is defined to be the spin quantum number. Finally, the direction of the electron’s spin along the z size 12{z} {} -axis is given by
    S z = m s h size 12{S rSub { size 8{z} } =m rSub { size 8{s} } { {h} over {2π} } } {} m s = 1 2 , + 1 2 , size 12{ left (m rSub { size 8{s} } = - { {1} over {2} } , + { {1} over {2} } right )} {}
    where S z size 12{S rSub { size 8{z} } } {} is the z size 12{z} {} -component of spin angular momentum and m s size 12{m rSub { size 8{s} } } {} is the spin projection quantum number. Spin projection m s =+ 1 / 2 size 12{m rSub { size 8{s} } "=+"1/2} {} is referred to as spin up, whereas m s = 1 / 2 size 12{m rSub { size 8{s} } = - 1/2} {} is called spin down. [link] summarizes the atomic quantum numbers and their allowed values.

Conceptual questions

Define the quantum numbers n, l, m l , s , and m s size 12{m rSub { size 8{s} } } {} .

Got questions? Get instant answers now!

For a given value of n size 12{n} {} , what are the allowed values of l size 12{l} {} ?

Got questions? Get instant answers now!

For a given value of l size 12{l} {} , what are the allowed values of m l size 12{m rSub { size 8{l} } } {} ? What are the allowed values of m l size 12{m rSub { size 8{l} } } {} for a given value of n size 12{n} {} ? Give an example in each case.

Got questions? Get instant answers now!

List all the possible values of s size 12{s} {} and m s size 12{m rSub { size 8{s} } } {} for an electron. Are there particles for which these values are different? The same?

Got questions? Get instant answers now!

Problem exercises

If an atom has an electron in the n = 5 size 12{n=5} {} state with m l = 3 size 12{m rSub { size 8{l} } =3} {} , what are the possible values of l size 12{l} {} ?

l = 4, 3 are possible since l < n size 12{l<n} {} and m l l size 12{ lline m rSub { size 8{l} } rline {underline {<}} l} {} .

Got questions? Get instant answers now!

An atom has an electron with m l = 2 size 12{m rSub { size 8{l} } =2} {} . What is the smallest value of n size 12{n} {} for this electron?

Got questions? Get instant answers now!

What are the possible values of m l size 12{m rSub { size 8{l} } } {} for an electron in the n = 4 size 12{n=4} {} state?

n = 4 l = 3, 2, 1, 0 m l = ± 3, ± 2, ± 1, 0 are possible.

Got questions? Get instant answers now!

What, if any, constraints does a value of m l = 1 size 12{m rSub { size 8{l} } =1} {} place on the other quantum numbers for an electron in an atom?

Got questions? Get instant answers now!

(a) Calculate the magnitude of the angular momentum for an l = 1 size 12{l=1} {} electron. (b) Compare your answer to the value Bohr proposed for the n = 1 size 12{n=1} {} state.

(a) 1 . 49 × 10 34 J s size 12{1 "." "49" times "10" rSup { size 8{ - "34"} } " J" cdot s} {}

(b) 1 . 06 × 10 34 J s size 12{1 "." "06" times "10" rSup { size 8{ - "34"} } " J" cdot s} {}

Got questions? Get instant answers now!

(a) What is the magnitude of the angular momentum for an l = 1 size 12{l=1} {} electron? (b) Calculate the magnitude of the electron’s spin angular momentum. (c) What is the ratio of these angular momenta?

Got questions? Get instant answers now!

Repeat [link] for l = 3 size 12{l=3} {} .

(a) 3 . 66 × 10 34 J s size 12{3 "." "66" times "10" rSup { size 8{ - "34"} } " J" cdot s} {}

(b) s = 9 . 13 × 10 35 J s size 12{s=9 "." "14" times "10" rSup { size 8{ - "35"} } " J" cdot s} {}

(c) L S = 12 3 / 4 = 4 size 12{ { {L} over {S} } = { { sqrt {"12"} } over { sqrt {3/4} } } =4} {}

Got questions? Get instant answers now!

(a) How many angles can L size 12{L} {} make with the z size 12{z} {} -axis for an l = 2 size 12{l=2} {} electron? (b) Calculate the value of the smallest angle.

Got questions? Get instant answers now!

What angles can the spin S size 12{S} {} of an electron make with the z size 12{z} {} -axis?

θ = 54.7º, 125.3º

Got questions? Get instant answers now!

Questions & Answers

What is the difference between a principle and a law
the law is universally proved. The principal depends on certain conditions.
Dr
state Faraday first law
aliyu Reply
it states that mass of an element deposited during electrolysis is directly proportional to the quantity of electricity discharge
Olamide
what does the speedometer of a car measure ?
Jyoti Reply
Car speedometer measures the rate of change of distance per unit time.
Moses
describe how a Michelson interferometer can be used to measure the index of refraction of a gas (including air)
WILLIAM Reply
using the law of reflection explain how powder takes the shine off a person's nose. what is the name of the optical effect?
WILLIAM
is higher resolution of microscope using red or blue light?.explain
WILLIAM
what is dimensional consistent
Mohammed
In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities and units of measure and tracking these dimensions as calculations or comparisons are performed
syed
can sound wave in air be polarized?
WILLIAM Reply
Unlike transverse waves such as electromagnetic waves, longitudinal waves such as sound waves cannot be polarized. ... Since sound waves vibrate along their direction of propagation, they cannot be polarized
Astronomy
A proton moves at 7.50×107m/s perpendicular to a magnetic field. The field causes the proton to travel in a circular path of radius 0.800 m. What is the field strength?
Celedonio Reply
derived dimenionsal formula
Ajak Reply
what is the difference between mass and weight
Isru Reply
assume that a boy was born when his father was eighteen years.if the boy is thirteen years old now, how is his father in
Isru
31yrs
Olamide
what is head-on collision
Javaid Reply
what is airflow
Godswill Reply
derivative of first differential equation
Haruna Reply
why static friction is greater than Kinetic friction
Ali Reply
draw magnetic field pattern for two wire carrying current in the same direction
Ven Reply
An American traveler in New Zealand carries a transformer to convert New Zealand’s standard 240 V to 120 V so that she can use some small appliances on her trip.
nkombo Reply
What is the ratio of turns in the primary and secondary coils of her transformer?
nkombo
what is energy
Yusuf
How electric lines and equipotential surface are mutually perpendicular?
Abid Reply
The potential difference between any two points on the surface is zero that implies È.Ŕ=0, Where R is the distance between two different points &E= Electric field intensity. From which we have cos þ =0, where þ is the angle between the directions of field and distance line, as E andR are zero. Thus
MAHADEV
sorry..E and R are non zero...
MAHADEV
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask