19.1 Population evolution  (Page 3/18)

 Page 3 / 18

Hardy-weinberg principle of equilibrium

In the early twentieth century, English mathematician Godfrey Hardy and German physician Wilhelm Weinberg stated the principle of equilibrium to describe the genetic makeup of a population. The theory, which later became known as the Hardy-Weinberg principle of equilibrium, states that a population’s allele and genotype frequencies are inherently stable— unless some kind of evolutionary force is acting upon the population, neither the allele nor the genotypic frequencies would change. The Hardy-Weinberg principle assumes conditions with no mutations, migration, emigration, or selective pressure for or against genotype, plus an infinite population; while no population can satisfy those conditions, the principle offers a useful model against which to compare real population changes.

Working under this theory, population geneticists represent different alleles as different variables in their mathematical models. The variable p, for example, often represents the frequency of a particular allele, say Y for the trait of yellow in Mendel’s peas, while the variable q represents the frequency of y alleles that confer the color green. If these are the only two possible alleles for a given locus in the population, p + q = 1. In other words, all the p alleles and all the q alleles make up all of the alleles for that locus that are found in the population.

But what ultimately interests most biologists is not the frequencies of different alleles, but the frequencies of the resulting genotypes, known as the population’s genetic structure    , from which scientists can surmise the distribution of phenotypes. If the phenotype is observed, only the genotype of the homozygous recessive alleles can be known; the calculations provide an estimate of the remaining genotypes. Since each individual carries two alleles per gene, if the allele frequencies (p and q) are known, predicting the frequencies of these genotypes is a simple mathematical calculation to determine the probability of getting these genotypes if two alleles are drawn at random from the gene pool. So in the above scenario, an individual pea plant could be pp (YY), and thus produce yellow peas; pq (Yy), also yellow; or qq (yy), and thus producing green peas ( [link] ). In other words, the frequency of pp individuals is simply p 2 ; the frequency of pq individuals is 2pq; and the frequency of qq individuals is q 2 . And, again, if p and q are the only two possible alleles for a given trait in the population, these genotypes frequencies will sum to one: p 2 + 2pq + q 2 = 1.

Art connection

In plants, violet flower color (V) is dominant over white (v). If p = 0.8 and q = 0.2 in a population of 500 plants, how many individuals would you expect to be homozygous dominant (VV), heterozygous (Vv), and homozygous recessive (vv)? How many plants would you expect to have violet flowers, and how many would have white flowers?

In theory, if a population is at equilibrium—that is, there are no evolutionary forces acting upon it—generation after generation would have the same gene pool and genetic structure, and these equations would all hold true all of the time. Of course, even Hardy and Weinberg recognized that no natural population is immune to evolution. Populations in nature are constantly changing in genetic makeup due to drift, mutation, possibly migration, and selection. As a result, the only way to determine the exact distribution of phenotypes in a population is to go out and count them. But the Hardy-Weinberg principle gives scientists a mathematical baseline of a non-evolving population to which they can compare evolving populations and thereby infer what evolutionary forces might be at play. If the frequencies of alleles or genotypes deviate from the value expected from the Hardy-Weinberg equation, then the population is evolving.

Use this online calculator to determine the genetic structure of a population.

Section summary

The modern synthesis of evolutionary theory grew out of the cohesion of Darwin’s, Wallace’s, and Mendel’s thoughts on evolution and heredity, along with the more modern study of population genetics. It describes the evolution of populations and species, from small-scale changes among individuals to large-scale changes over paleontological time periods. To understand how organisms evolve, scientists can track populations’ allele frequencies over time. If they differ from generation to generation, scientists can conclude that the population is not in Hardy-Weinberg equilibrium, and is thus evolving.

Art connections

[link] In plants, violet flower color (V) is dominant over white (v). If p=.8 and q = 0.2 in a population of 500 plants, how many individuals would you expect to be homozygous dominant (VV), heterozygous (Vv), and homozygous recessive (vv)? How many plants would you expect to have violet flowers, and how many would have white flowers?

[link] The expected distribution is 320 VV, 160Vv, and 20 vv plants. Plants with VV or Vv genotypes would have violet flowers, and plants with the vv genotype would have white flowers, so a total of 480 plants would be expected to have violet flowers, and 20 plants would have white flowers.

what is buttress root?
Buttress root are wide large root
Iyabo
Buttress root/roots are thick roots that emerge out form the base of a large canopy
Musoke
From the base of a large canopy
Musoke
What is biology
Biology is the study of structure and growth of living things and organisms within their biography
Musoke
compare the mechanism of gaseous exchange in an insect and mammal
what are the characteristic of livingthing
Movement Respiration Nutrition Irritability or sensitivity Growth Excretion Reproduction Adaptation Competition Death or Life Span
Emmanuel
Respiration Irritability Movement Excretion Nutrition Growth Reproduction
Amponsah
what is the function of medulla oblongata
what is the strongest bone in the human body
Chionye
what is biology
is a branch of science which deals with the study of living thing
sheka
thanks
Dauda
Biology is got from two main words: bios: means life and Logos: means knowledge therefore, biology is a branch of science that deals with knowledge, life and functioning of living things.
Musoke
what are the characteristics of organism
Seldam
Responds to stimuli
Musoke
Biology is an aspect of science that deals with the. study of living organisms
Amponsah
how do we draw a genetic diagram?
Branches of variation
What is variation
this is the difference among different species
joe
natural selection was done by who
by Charles Darwin
Godson
Charles Darwin
Charity
who proposed Cell doctrine
biology introduction
describe how the gurd cells regulate the movement of gases in and out of a leaf.
Tony
state the main functions of the leaf
what is the similarity between meiosis and mitosis
kalisto
meiosis-involves the division of sex cells mitosis-involves the division of body cells
ANGULA
ok
Osikhena
Regulation of blood sugar level
Describes larmack theory
Mention five modes of nutrition in ecology
Mayiik
Saprophytic
Evans
commercialism mutualism saprophytic parasitic simboitism
Osikhena