<< Chapter < Page Chapter >> Page >

Problem-solving strategies for kirchhoff’s rules

  1. Make certain there is a clear circuit diagram on which you can label all known and unknown resistances, emfs, and currents. If a current is unknown, you must assign it a direction. This is necessary for determining the signs of potential changes. If you assign the direction incorrectly, the current will be found to have a negative value—no harm done.
  2. Apply the junction rule to any junction in the circuit. Each time the junction rule is applied, you should get an equation with a current that does not appear in a previous application—if not, then the equation is redundant.
  3. Apply the loop rule to as many loops as needed to solve for the unknowns in the problem. (There must be as many independent equations as unknowns.) To apply the loop rule, you must choose a direction to go around the loop. Then carefully and consistently determine the signs of the potential changes for each element using the four bulleted points discussed above in conjunction with [link] .
  4. Solve the simultaneous equations for the unknowns. This may involve many algebraic steps, requiring careful checking and rechecking.
  5. Check to see whether the answers are reasonable and consistent. The numbers should be of the correct order of magnitude, neither exceedingly large nor vanishingly small. The signs should be reasonable—for example, no resistance should be negative. Check to see that the values obtained satisfy the various equations obtained from applying the rules. The currents should satisfy the junction rule, for example.

The material in this section is correct in theory. We should be able to verify it by making measurements of current and voltage. In fact, some of the devices used to make such measurements are straightforward applications of the principles covered so far and are explored in the next modules. As we shall see, a very basic, even profound, fact results—making a measurement alters the quantity being measured.

Can Kirchhoff’s rules be applied to simple series and parallel circuits or are they restricted for use in more complicated circuits that are not combinations of series and parallel?

Kirchhoff's rules can be applied to any circuit since they are applications to circuits of two conservation laws. Conservation laws are the most broadly applicable principles in physics. It is usually mathematically simpler to use the rules for series and parallel in simpler circuits so we emphasize Kirchhoff’s rules for use in more complicated situations. But the rules for series and parallel can be derived from Kirchhoff’s rules. Moreover, Kirchhoff’s rules can be expanded to devices other than resistors and emfs, such as capacitors, and are one of the basic analysis devices in circuit analysis.

Section summary

  • Kirchhoff’s rules can be used to analyze any circuit, simple or complex.
  • Kirchhoff’s first rule—the junction rule: The sum of all currents entering a junction must equal the sum of all currents leaving the junction.
  • Kirchhoff’s second rule—the loop rule: The algebraic sum of changes in potential around any closed circuit path (loop) must be zero.
  • The two rules are based, respectively, on the laws of conservation of charge and energy.
  • When calculating potential and current using Kirchhoff’s rules, a set of conventions must be followed for determining the correct signs of various terms.
  • The simpler series and parallel rules are special cases of Kirchhoff’s rules.

Conceptual questions

Can all of the currents going into the junction in [link] be positive? Explain.

The diagram shows a T junction with currents I sub one, I sub two, and I sub three entering the T junction.

Apply the junction rule to junction b in [link] . Is any new information gained by applying the junction rule at e? (In the figure, each emf is represented by script E.)

The diagram shows a complex circuit with four voltage sources: E sub one, E sub two, E sub three, E sub four and several resistive loads, wired in two loops and two junctions. Several points on the diagram are marked with letters a through g. The current in each branch is labeled separately.

(a) What is the potential difference going from point a to point b in [link] ? (b) What is the potential difference going from c to b? (c) From e to g? (d) From e to d?

Apply the loop rule to loop afedcba in [link] .

Apply the loop rule to loops abgefa and cbgedc in [link] .

Problem exercises

Apply the loop rule to loop abcdefgha in [link] .

I 2 R 2 + emf 1 I 2 r 1 + I 3 R 3 + I 3 r 2 - emf 2 = 0 size 12{ {underline {-I rSub { size 8{2} } R rSub { size 8{3} } + "emf" rSub { size 8{1} } - ital " I" rSub { size 8{2} } r rSub { size 8{1} } + ital " I" rSub { size 8{3} } r rSub { size 8{3} } + ital " I" rSub { size 8{3} } r rSub { size 8{2} } +- "emf" rSub { size 8{2} } =" 0"}} } {}

Apply the loop rule to loop aedcba in [link] .

Verify the second equation in [link] by substituting the values found for the currents I 1 size 12{I rSub { size 8{1} } } {} and I 2 size 12{I rSub { size 8{2} } } {} .

Verify the third equation in [link] by substituting the values found for the currents I 1 size 12{I rSub { size 8{1} } } {} and I 3 size 12{I rSub { size 8{3} } } {} .

Apply the junction rule at point a in [link] .

The diagram shows a complex circuit with four voltage sources E sub one, E sub two, E sub three, E sub four and several resistive loads, wired in two loops and many junctions. Several points on the diagram are marked with letters a through j. The current in each branch is labeled separately.
I 3 = I 1 + I 2 size 12{I rSub { size 8{3} } = ital " I" rSub { size 8{1} } + ital " I" rSub { size 8{2} } } {}

Apply the loop rule to loop abcdefghija in [link] .

Apply the loop rule to loop akledcba in [link] .

emf 2 - I 2 r 2 - I 2 R 2 + I 1 R 5 + I 1 r 1 - emf 1 + I 1 R 1 = 0 size 12{ {underline { "emf" rSub { size 8{2} } +- ital " I" rSub { size 8{2} } r rSub { size 8{2} } +- ital " I" rSub { size 8{2} } R rSub { size 8{2} } + ital " I" rSub { size 8{1} } R rSub { size 8{5} } +I rSub { size 8{1} } r rSub { size 8{1} } +- "emf" rSub { size 8{1} } + ital " I" rSub { size 8{1} } R rSub { size 8{1} } = 0}} } {}

Find the currents flowing in the circuit in [link] . Explicitly show how you follow the steps in the Problem-Solving Strategies for Series and Parallel Resistors .

Solve [link] , but use loop abcdefgha instead of loop akledcba. Explicitly show how you follow the steps in the Problem-Solving Strategies for Series and Parallel Resistors .

(a) I 1 = 4.75 A size 12{I rSub { size 8{1} } =4 cdot "75 A"} {}

(b) I 2 = - 3 . 5 A size 12{I rSub { size 8{"2 "} } = +- 3 "." "5 A"} {} {}

(c) I 3 = 8 . 25 A size 12{I rSub { size 8{3} } =8 "." "25"" A"} {}

Find the currents flowing in the circuit in [link] .

Unreasonable Results

Consider the circuit in [link] , and suppose that the emfs are unknown and the currents are given to be I 1 = 5 . 00 A , I 2 = 3 .0 A size 12{I rSub { size 8{2} } =3 "." 0" A"} {} , and I 3 = –2 . 00 A size 12{I rSub { size 8{3} } "=-"2 "." "00"" A"} {} . (a) Could you find the emfs? (b) What is wrong with the assumptions?

The diagram shows a complex circuit with two voltage sources E sub one and E sub two, and three resistive loads, wired in two loops and two junctions. Several points on the diagram are marked with letters a through h. The current in each branch is labeled separately.

(a) No, you would get inconsistent equations to solve.

(b) I 1 I 2 + I 3 size 12{I rSub { size 8{1} }<>I rSub { size 8{2} } +I rSub { size 8{3} } } {} . The assumed currents violate the junction rule.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, College physics -- hlca 1104. OpenStax CNX. May 18, 2013 Download for free at http://legacy.cnx.org/content/col11525/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics -- hlca 1104' conversation and receive update notifications?

Ask