<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Discuss the role of transcription factors in gene regulation
  • Explain how enhancers and repressors regulate gene expression

Like prokaryotic cells, the transcription of genes in eukaryotes requires the actions of an RNA polymerase to bind to a sequence upstream of a gene to initiate transcription. However, unlike prokaryotic cells, the eukaryotic RNA polymerase requires other proteins, or transcription factors, to facilitate transcription initiation. Transcription factors are proteins that bind to the promoter sequence and other regulatory sequences to control the transcription of the target gene. RNA polymerase by itself cannot initiate transcription in eukaryotic cells. Transcription factors must bind to the promoter region first and recruit RNA polymerase to the site for transcription to be established.

View the process of transcription—the making of RNA from a DNA template—at this site .

The promoter and the transcription machinery

Genes are organized to make the control of gene expression easier. The promoter region is immediately upstream of the coding sequence. This region can be short (only a few nucleotides in length) or quite long (hundreds of nucleotides long). The longer the promoter, the more available space for proteins to bind. This also adds more control to the transcription process. The length of the promoter is gene-specific and can differ dramatically between genes. Consequently, the level of control of gene expression can also differ quite dramatically between genes. The purpose of the promoter is to bind transcription factors that control the initiation of transcription.

Within the promoter region, just upstream of the transcriptional start site, resides the TATA box. This box is simply a repeat of thymine and adenine dinucleotides (literally, TATA repeats). RNA polymerase binds to the transcription initiation complex, allowing transcription to occur. To initiate transcription, a transcription factor (TFIID) is the first to bind to the TATA box. Binding of TFIID recruits other transcription factors, including TFIIB, TFIIE, TFIIF, and TFIIH to the TATA box. Once this complex is assembled, RNA polymerase can bind to its upstream sequence. When bound along with the transcription factors, RNA polymerase is phosphorylated. This releases part of the protein from the DNA to activate the transcription initiation complex and places RNA polymerase in the correct orientation to begin transcription; DNA-bending protein brings the enhancer, which can be quite a distance from the gene, in contact with transcription factors and mediator proteins ( [link] ).

Eukaryotic gene expression is controlled by a promoter immediately adjacent to the gene, and an enhancer far upstream. The DNA folds over itself, bringing the enhancer next to the promoter. Transcription factors and mediator proteins are sandwiched between the promoter and the enhancer. Short DNA sequences within the enhancer called distal control elements bind activators, which in turn bind transcription factors and mediator proteins bound to the promoter. RNA polymerase binds the complex, allowing transcription to begin. Different genes have enhancers with different distal control elements, allowing differential regulation of transcription.
An enhancer is a DNA sequence that promotes transcription. Each enhancer is made up of short DNA sequences called distal control elements. Activators bound to the distal control elements interact with mediator proteins and transcription factors. Two different genes may have the same promoter but different distal control elements, enabling differential gene expression.

In addition to the general transcription factors, other transcription factors can bind to the promoter to regulate gene transcription. These transcription factors bind to the promoters of a specific set of genes. They are not general transcription factors that bind to every promoter complex, but are recruited to a specific sequence on the promoter of a specific gene. There are hundreds of transcription factors in a cell that each bind specifically to a particular DNA sequence motif. When transcription factors bind to the promoter just upstream of the encoded gene, it is referred to as a cis -acting element    , because it is on the same chromosome just next to the gene. The region that a particular transcription factor binds to is called the transcription factor binding site    . Transcription factors respond to environmental stimuli that cause the proteins to find their binding sites and initiate transcription of the gene that is needed.

Enhancers and transcription

In some eukaryotic genes, there are regions that help increase or enhance transcription. These regions, called enhancers , are not necessarily close to the genes they enhance. They can be located upstream of a gene, within the coding region of the gene, downstream of a gene, or may be thousands of nucleotides away.

Enhancer regions are binding sequences, or sites, for transcription factors. When a DNA-bending protein binds, the shape of the DNA changes ( [link] ). This shape change allows for the interaction of the activators bound to the enhancers with the transcription factors bound to the promoter region and the RNA polymerase. Whereas DNA is generally depicted as a straight line in two dimensions, it is actually a three-dimensional object. Therefore, a nucleotide sequence thousands of nucleotides away can fold over and interact with a specific promoter.

Turning genes off: transcriptional repressors

Like prokaryotic cells, eukaryotic cells also have mechanisms to prevent transcription. Transcriptional repressors can bind to promoter or enhancer regions and block transcription. Like the transcriptional activators, repressors respond to external stimuli to prevent the binding of activating transcription factors.

Section summary

To start transcription, general transcription factors, such as TFIID, TFIIH, and others, must first bind to the TATA box and recruit RNA polymerase to that location. The binding of additional regulatory transcription factors to cis -acting elements will either increase or prevent transcription. In addition to promoter sequences, enhancer regions help augment transcription. Enhancers can be upstream, downstream, within a gene itself, or on other chromosomes. Transcription factors bind to enhancer regions to increase or prevent transcription.

Questions & Answers

how are proteins digested?
Trox Reply
how are proteins digested
guys what is locomotion?
Misheal Reply
what is anatomy
Mohamed Reply
no idea
Anatomy is the branch of science that deals with the study of internal and external structures of an organism
Anatomy is the branch of science that deals with the study of the internal structure of an organism
what is locomotion?
no idea
Locomotion may simply mean the movement of an organism from one point to another without permanent displacement of the organidm it'self
simply, its the ability to move
Thanks guys
I have gotten it
locomotion as an art student is the ability to move from on place to another
muscles that are concerned with locomotion
Anatomy deals with the study of internal structures of an organism
The ability of cells or organisms to move and propel itself from place to place. supplement. locomotion in biology pertains to the various movements of organisms (single-celled or multicellular organisms) to propel themselves from one place to another.
Anatomy is the branch of biology concerned with structure of organisms and their parts. Anatomy is a branch of natural science which deals with the structure organization of living things - human anatomy is one of the essential basic sciences that are applied in medicine
what are the theory if cells
Julius Reply
What's the function of epiglottis
Ugo Reply
What Is The Other Name For Intestinal Juice?
Justin Reply
what is the largestest planet of the universe
rick Reply
what are the types of cell
Bernard Reply
prokaryotic and eukaryotic
prokaryotic cell and eukaryotic cell
what is the protein found in the blood?
Tobias Reply
what is parasitic movement
Emmanuel Reply
Parasitic movement is a problem for all of us. So is its companion, parasitic tension. Parasitic movement is the excess contraction of muscles that you don't actually need to complete an action.
HW a u
am OK how a u
absorption may simply mean utilization of food in the body
How are you doing all of you guys ?
doing fyn en u
how are you doing right now
Hello everyone how do you all do!! Am new to this place can someone lead my way?
hello jusu you are likely to find interesting questions here.you are also free to send your question and it will be discussed on, you are also free to answer any quetion that is being possed by anyone
what are eukaryotic cells
Thiza Reply
eukaryotic cells which posses a true nucleus that is the DNA is enclosed and covered by a nuclear membrane
what is the mean of pair of chromosomes
Kazula Reply
23 haploid and 23diploid
how are you studying in this quarantine? .. how are you keeping yourselves motivated?
sivajijadhav @815.com
good morning guyz
tell me if you know what can be used...than reading pls hint me pls 🙏🙏🙏
good, reading all alone is the best for me
what is the important of sex
Aremu Reply
why did human being need sex?
because he/she have feelings
reproduction...to make more
due to active harmon
One important of sex is to reproduce
to ensure the countinuty of life
all of you are right
for sexual satisfaction and birth
Sex is an important part of life and overall well-being. in relationship, orgasms play a significant part in bonding physical and emotional benefits like reduced risk of heart disease improved self- esteem, and more can come from having sex. you can still have similar benefits without sex
what is momentum
Asiya Reply
The strength or force that allows something to continue or grow stronger or faster as time pass
What is Centripetal Force?
centrepital force is the inward force required to keep a body moving with constant speed in a circular path
a force that acts on a body moving in a circular path and is directed toward the center around which the body is moving

Get the best Biology course in your pocket!

Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?