<< Chapter < Page Chapter >> Page >

Conceptual models

Conceptual models are useful for describing ecosystem structure and dynamics and for demonstrating the relationships between different organisms in a community and their environment. Conceptual models are usually depicted graphically as flow charts. The organisms and their resources are grouped into specific compartments with arrows showing the relationship and transfer of energy or nutrients between them. Thus, these diagrams are sometimes called compartment models.

To model the cycling of mineral nutrients, organic and inorganic nutrients are subdivided into those that are bioavailable (ready to be incorporated into biological macromolecules) and those that are not. For example, in a terrestrial ecosystem near a deposit of coal, carbon will be available to the plants of this ecosystem as carbon dioxide gas in a short-term period, not from the carbon-rich coal itself. However, over a longer period, microorganisms capable of digesting coal will incorporate its carbon or release it as natural gas (methane, CH 4 ), changing this unavailable organic source into an available one. This conversion is greatly accelerated by the combustion of fossil fuels by humans, which releases large amounts of carbon dioxide into the atmosphere. This is thought to be a major factor in the rise of the atmospheric carbon dioxide levels in the industrial age. The carbon dioxide released from burning fossil fuels is produced faster than photosynthetic organisms can use it. This process is intensified by the reduction of photosynthetic trees because of worldwide deforestation. Most scientists agree that high atmospheric carbon dioxide is a major cause of global climate change.

Conceptual models are also used to show the flow of energy through particular ecosystems. [link] is based on Howard T. Odum’s classical study of the Silver Springs, Florida, holistic ecosystem in the mid-twentieth century. Howard T. Odum, “Trophic Structure and Productivity of Silver Springs, Florida,” Ecological Monographs 27, no. 1 (1957): 47–112. This study shows the energy content and transfer between various ecosystem compartments.

Art connection

 Flow chart shows that the ecosystem absorbs 1,700,00 calories per meter squared per year of sunlight. Primary producers have a gross productivity of 20,810 calories per meter squared per year. 13,187 calories per meter squared per year is lost to respiration and heat, so the net productivity of primary producers is 7,618 calories per meter squared per year. 4,250 calories per meter squared per year is passed on to decomposers, and the remaining 3,368 calories per meter squared per year is passed on to primary consumers. Thus, the gross productivity of primary consumers is 3,368 calories per meter squared per year. 2,265 calories per meter squared per year is lost to heat and respiration, resulting in a net productivity for primary consumers of 1,103 calories per meter squared per year. 720 calories per meter squared per year is lost to decomposers, and 383 calories per meter squared per year becomes the gross productivity of secondary consumers. 272 calories per meter squared per year is lost to heat and respiration, so the net productivity for secondary consumers is 111 calories per meter squared per year. 90 calories per meter squared per year is lost to decomposers, and the remaining 21 calories per meter squared per year becomes the gross productivity of tertiary consumers. Sixteen calories per meter squared per year is lost to respiration and heat, so the net productivity of tertiary consumers is 5 calories per meter squared per year. All this energy is lost to decomposers. In total, decomposers use 5,060 calories per meter squared per year of energy, and 20,810 calories per meter squared per year is lost to respiration and heat.
This conceptual model shows the flow of energy through a spring ecosystem in Silver Springs, Florida. Notice that the energy decreases with each increase in trophic level.

Why do you think the value for gross productivity of the primary producers is the same as the value for total heat and respiration (20,810 kcal/m 2 /yr)?

Analytical and simulation models

The major limitation of conceptual models is their inability to predict the consequences of changes in ecosystem species and/or environment. Ecosystems are dynamic entities and subject to a variety of abiotic and biotic disturbances caused by natural forces and/or human activity. Ecosystems altered from their initial equilibrium state can often recover from such disturbances and return to a state of equilibrium. As most ecosystems are subject to periodic disturbances and are often in a state of change, they are usually either moving toward or away from their equilibrium state. There are many of these equilibrium states among the various components of an ecosystem, which affects the ecosystem overall. Furthermore, as humans have the ability to greatly and rapidly alter the species content and habitat of an ecosystem, the need for predictive models that enable understanding of how ecosystems respond to these changes becomes more crucial.

Analytical models often use simple, linear components of ecosystems, such as food chains, and are known to be complex mathematically; therefore, they require a significant amount of mathematical knowledge and expertise. Although analytical models have great potential, their simplification of complex ecosystems is thought to limit their accuracy. Simulation models that use computer programs are better able to deal with the complexities of ecosystem structure.

A recent development in simulation modeling uses supercomputers to create and run individual-based simulations, which accounts for the behavior of individual organisms and their effects on the ecosystem as a whole. These simulations are considered to be the most accurate and predictive of the complex responses of ecosystems to disturbances.

Visit The Darwin Project to view a variety of ecosystem models.

Section summary

Ecosystems exist on land, at sea, in the air, and underground. Different ways of modeling ecosystems are necessary to understand how environmental disturbances will affect ecosystem structure and dynamics. Conceptual models are useful to show the general relationships between organisms and the flow of materials or energy between them. Analytical models are used to describe linear food chains, and simulation models work best with holistic food webs.

Art connections

[link] Why do you think the value for gross productivity of the primary producers is the same as the value for total heat and respiration (20,810 kcal/m 2 /yr)?

[link] According to the first law of thermodynamics, energy can neither be created nor destroyed. Eventually, all energy consumed by living systems is lost as heat or used for respiration, and the total energy output of the system must equal the energy that went into it.

Got questions? Get instant answers now!

Questions & Answers

what is a specicide
Twinkl Reply
why are mosquitoes primary and secondary consumers
Twinkl
what are the structures found in all viruses
Twinkl
how does vaccinating a woman prevent her baby from getting the illness?
Twinkl
how does selective breeding increase crop size
Twinkl
wat is an animal cell
Monicah Reply
what is deer
Khansawu Reply
breathing in reptiles
sam Reply
which molecules binds to the active site of an enzyme
Ghulam Reply
human
Haggai
what is nutrients
Patrick Reply
nutrients is substance which body use in terms of need
Haggai
yes..
Abdullahi
can I join?
Osei
substance that provides nourishment essential for the maintenance of life and for growth.
umar
right same answer as you Umar
Namuli
please remind me
Namuli
Any material that provide essential components for cell metabolisms is nutrient
Mahmood
what are the types of skeleton
Tanyi Reply
endo skeleton and exo skeleton
Faith
or types of skeletons There is exo skeleton found in class insecta Exo skeleton found in phylum chordata and lastly hydrostatic skeleton found mainly in earth worms
Daniel
and hydrostatic skeleton
Godbless
bronah
Kapoko
endo, exo and hydrostatic skeleton
Mico
what is life?
Jerson Reply
life is when any living thing breath or respirate.
Lucky
I want to join
Patrick
me too
Favour
me two
Monday
me too
Bengazy
me too
Maggie
I here
Yahaya
Does anybody knows another biology app that brings good understand
Lucky
give an example of a phylum where all members have open circulatory
Omoro Reply
anthropoda
Daniel
phylum Anthropoda
Daniel
how do u change the unit of temperature from degree celsius to degree Fahrenheit
Maggie
what are beneficial effects in industrial
Nnamani Reply
create employment
ibrahim
provide food
ibrahim
pollution
ibrahim
dirty the environment
ibrahim
pollution and lack of knowledge about how to manage waste
Alex
what is gametophyte
Ibrahim Reply
what is biology
Basiru Reply
Biology deals with the study of living organisms and their interactions with each other and the environment.
Quartey
biology simply means the study of living and non-livingthings.
Shamstar
what is the meaning of ubiquitous
Hamziyatu Reply
Under what topic is this question
fred
three branches of biology
Alexander Reply
what is the cell
Olajide Reply
what is life
Olajide
cell is the functional and structural unit of life
Shweta
life is a problem solving entity
Atanga
what is the characteristics of plant cell
Quaku

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask